A variable-complexity strategy of combining simple and detailed analysis methods is presented for the design optimization of a high-speed civil transport (HSCT) wing. Two sets of results are shown: the aerodynamic design of the wing using algebraic weight equations for structural considerations, and optimization results of the internal wing structure for a fixed wing configuration. We show example results indicating that using simple analysis methods alone for the calculation of a critical constraint can allow an optimizer to exploit weaknesses in the analysis. The structural optimization results provide a valuable check for the weight equations used in the aerodynamic design. In addition, these results confirm the need for using simple, algebraic models in conjunction with more detailed analysis methods. A strategy of interlaced aerodynanic-structural design is proposed.