Singularity Analysis of Lower Mobility Parallel Manipulators Using Grassmann–Cayley Algebra

This paper introduces a methodology to analyze geometrically the singularities of manipulators, of which legs apply both actuation forces and constraint moments to their moving platform. Lower mobility parallel manipulators and parallel manipulators, of which some legs have no spherical joint, are such manipulators. The geometric conditions associated with the dependency of six PlUumlcker vectors of finite lines or lines at infinity constituting the rows of the inverse Jacobian matrix are formulated using Grassmann-Cayley algebra (GCA). Accordingly, the singularity conditions are obtained in vector form. This study is illustrated with the singularity analysis of four manipulators.

[1]  Luca Bruzzone,et al.  Constraint Singularities of Force Transmission in Nonredundant Parallel Robots With Less Than Six Degrees of Freedom , 2003 .

[2]  Jorge Angeles,et al.  Kinetostatic Design of an Innovative Schönflies-Motion Generator , 2006 .

[3]  Helmut Pottmann,et al.  An introduction to line geometry with applications , 1999, Comput. Aided Des..

[4]  K. H. Hunt,et al.  Kinematic geometry of mechanisms , 1978 .

[5]  Joseph Duffy,et al.  The Elliptic Polarity of Screws , 1985 .

[6]  J. Michael McCarthy,et al.  Conditions for line‐based singularities in spatial platform manipulators , 1998 .

[7]  J. Dai,et al.  Geometric Analysis of Overconstrained Parallel Manipulators with Three and Four Degrees of Freedom , 2002 .

[8]  Jean-Pierre Merlet A Formal-Numerical Approach for Robust In-Workspace Singularity Detection , 2007, IEEE Transactions on Robotics.

[9]  Moshe Shoham,et al.  Singularity condition of six-degree-of-freedom three-legged parallel robots based on grassmann-cayley algebra , 2006, IEEE Transactions on Robotics.

[10]  Alon Wolf,et al.  Investigation of Parallel Manipulators Using Linear Complex Approximation , 2003 .

[11]  Jean-Pierre Merlet,et al.  Parallel Robots , 2000 .

[12]  Damien Chablat,et al.  Singularity Analysis of Limited-dof Parallel Manipulators using Grassmann-Cayley Algebra , 2008, ArXiv.

[13]  Jorge Angeles,et al.  The dynamics of parallel Schönflies motion generators: The case of a two-limb system , 2009 .

[14]  Vincenzo Parenti-Castelli,et al.  A Translational 3-dof Parallel Manipulator , 1998 .

[15]  Moshe Shoham,et al.  Application of Grassmann—Cayley Algebra to Geometrical Interpretation of Parallel Robot Singularities , 2009, Int. J. Robotics Res..

[16]  Damien Chablat,et al.  Workspace Analysis of the Parallel Module of the VERNE Machine , 2007, ArXiv.

[17]  Jean-Pierre Merlet,et al.  Singular Configurations of Parallel Manipulators and Grassmann Geometry , 1988, Int. J. Robotics Res..

[18]  Damien Chablat,et al.  SINGULAB - A Graphical user Interface for the Singularity Analysis of Parallel Robots based on Grassmann-Cayley Algebra , 2008, ArXiv.

[19]  Neil L. White,et al.  Grassmann—Cayley algebra and robotics , 1994, J. Intell. Robotic Syst..

[20]  Neil White,et al.  Grassmann-Cayley Algebra and Robotics Applications , 2005 .

[21]  L. Tsai,et al.  Jacobian Analysis of Limited-DOF Parallel Manipulators , 2002 .

[22]  O. Henrici The Theory of Screws , 1890, Nature.

[23]  R. Clavel,et al.  A Fast Robot with Parallel Geometry , 1988 .

[24]  N. White,et al.  The bracket ring of a combinatorial geometry. I , 1975 .

[25]  Ernesto Staffetti Analysis of Rigid Body Interactions for Compliant Motion Tasks Using the Grassmann-Cayley Algebra , 2009, IEEE Trans Autom. Sci. Eng..

[26]  M. Shoham,et al.  Singularity analysis of a class of parallel robots based on Grassmann–Cayley algebra , 2006 .