An in situ colorimetric measurement study of electrochromism in the di-n-heptyl viologen system

Abstract An in situ colorimetric method, based on the CIE (Commission Internationale de l’Eclairage) system of colorimetry, has been applied to the study of the electrochromic N , N ′-bis( n -heptyl)-4,4′-bipyridylium (di- n -heptyl viologen) system in aqueous solution on transmissive ITO/glass substrates. On electrochemical reduction of the di- n -heptyl viologen di-cation, the purple di- n -heptyl viologen radical cation salt deposits as a film and the changes in hue and saturation have been tracked using CIE 1931 xy chromaticity coordinates. The CIELAB 1976 colour space coordinates of the purple di- n -heptyl viologen radical cation salt were L ∗  = 76, a ∗  = 33, and b ∗  = −20, with a complementary wavelength of 548 nm. A sharp decrease in luminance was found on formation of the di- n -heptyl viologen radical cation salt. Colour coordinates for the reverse (oxidation) direction plots show hysteresis, implying that specific choice of colour values depends on both the potential applied and from which direction the potential is changed.

[1]  F. Wudl,et al.  Organic Polymeric Electrochromic Devices: Polychromism with Very High Coloration Efficiency , 2004 .

[2]  G. Wyszecki,et al.  Color Science Concepts and Methods , 1982 .

[3]  Kurt Nassau,et al.  Color for Science, Art and Technology , 1998 .

[4]  John R. Reynolds,et al.  Electrochromic organic and polymeric materials for display applications , 2006, Displays.

[5]  Benjamin D. Reeves,et al.  Electrochromic devices based on soluble and processable dioxythiophene polymersElectronic supplementary information (ESI) available: details of the synthesis of PProDOT(CH2OC18H37)2 and PProDOT(CH2OEtHx)2 and their polymerization. See http://www.rsc.org/suppdata/jm/b3/b306365h/ , 2003 .

[6]  John R. Reynolds,et al.  In situ colorimetric analysis of electrochromic polymer films and devices , 2001 .

[7]  Nicholas J. Goddard,et al.  Spectroelectrochemical studies of some viologens used in electrochromic display applications , 1983 .

[8]  Gunnar A. Niklasson,et al.  Electrochromism in nickel oxide films containing Mg, Al, Si, V, Zr, Nb, Ag, or Ta , 2004 .

[9]  Susan M. Reiss The color of science , 1993 .

[10]  Claes G. Granqvist,et al.  Handbook of inorganic electrochromic materials , 1995 .

[11]  J. J. Ponjee,et al.  Modified Viologens with Improved Electrochemical Properties for Display Applications , 1977 .

[12]  D. Rosseinsky,et al.  Comproportionation in propylene carbonate of substituted bipyridyliums. Rates and equilibria by rotating ring–disc electrode and associated electrochemical studies , 1993 .

[13]  John R. Reynolds,et al.  Enhanced Contrast Dual Polymer Electrochromic Devices , 2002 .

[14]  S. Fletcher,et al.  Nucleation and charge-transfer kinetics at the viologen/SnO2 interface in electrochromic device applications , 1979 .

[15]  David R. Rosseinsky,et al.  Electrochromism and Electrochromic Devices , 2007 .

[16]  R. Kuehni Color: An Introduction to Practice and Principles , 1996 .

[17]  K. Abboud,et al.  Donor-mediated band gap reduction in a homologous series of conjugated polymers. , 2004, Journal of the American Chemical Society.

[18]  J. Reynolds,et al.  In situ colorimetric and composite coloration efficiency measurements for electrochromic Prussian blue , 2005 .

[19]  Johannes Jacobus Ponjee,et al.  New electrochromic memory display , 1973 .

[20]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[21]  John R. Reynolds,et al.  In situ colorimetric analysis of electrochromic polymers and devices , 2000 .

[22]  Gunther Wyszecki,et al.  Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd Edition , 2000 .

[23]  John R. Reynolds,et al.  N-substituted poly(3,4-propylenedioxypyrrole)s: High gap and low redox potential switching electroactive and electrochromic polymers , 2003 .

[24]  Paul M. S. Monk,et al.  The Viologens: Physicochemical Properties, Synthesis and Applications of the Salts of 4,4'-Bipyridine , 1998 .