Evolutionary pressures on apicoplast transit peptides.

Malaria parasites (species of the genus Plasmodium) harbor a relict chloroplast (the apicoplast) that is the target of novel antimalarials. Numerous nuclear-encoded proteins are translocated into the apicoplast courtesy of a bipartite N-terminal extension. The first component of the bipartite leader resembles a standard signal peptide present at the N-terminus of secreted proteins that enter the endomembrane system. Analysis of the second portion of the bipartite leaders of P. falciparum, the so-called transit peptide, indicates similarities to plant transit peptides, although the amino acid composition of P. falciparum transit peptides shows a strong bias, which we rationalize by the extraordinarily high AT content of P. falciparum DNA. 786 plastid transit peptides were also examined from several other apicomplexan parasites, as well as from angiosperm plants. In each case, amino acid biases were correlated with nucleotide AT content. A comparison of a spectrum of organisms containing primary and secondary plastids also revealed features unique to secondary plastid transit peptides. These unusual features are explained in the context of secondary plastid trafficking via the endomembrane system.

[1]  G. McFadden,et al.  Evidence that an amoeba acquired a chloroplast by retaining part of an engulfed eukaryotic alga. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[2]  M. Fraunholz,et al.  Multiple Functionally Redundant Signals Mediate Targeting to the Apicoplast in the Apicomplexan Parasite Toxoplasma gondii , 2004, Eukaryotic Cell.

[3]  Takashi Gojobori,et al.  Metabolic efficiency and amino acid composition in the proteomes of Escherichia coli and Bacillus subtilis , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[4]  T. Cavalier-smith Principles of Protein and Lipid Targeting in Secondary Symbiogenesis: Euglenoid, Dinoflagellate, and Sporozoan Plastid Origins and the Eukaryote Family Tree 1 , 2 , 1999, The Journal of eukaryotic microbiology.

[5]  Michael Reith,et al.  The highly reduced genome of an enslaved algal nucleus , 2001, Nature.

[6]  M. Fraunholz,et al.  Evidence for nucleomorph to host nucleus gene transfer: light-harvesting complex proteins from cryptomonads and chlorarachniophytes. , 2000, Protist.

[7]  R. Schwarz,et al.  Synthesis of Chloroplast Galactolipids in Apicomplexan Parasites , 2002, Eukaryotic Cell.

[8]  G. McFadden,et al.  Translocation of proteins across the multiple membranes of complex plastids. , 2001, Biochimica et biophysica acta.

[9]  S. Patankar,et al.  A screen for conserved sequences with biased base composition identifies noncoding RNAs in the A-T rich genome of Plasmodium falciparum. , 2005, Molecular and biochemical parasitology.

[10]  D. Spencer,et al.  Cryptomonad algae are evolutionary chimaeras of two phylogenetically distinct unicellular eukaryotes , 1991, Nature.

[11]  A. Boschetti,et al.  Effect of precursor protein phosphorylation on import into isolated chloroplasts from Chlamydomonas , 2001, FEBS letters.

[12]  D. Battistutta,et al.  Codon usage in Plasmodium falciparum. , 1988, Molecular and biochemical parasitology.

[13]  P. Keeling,et al.  Nucleus-Encoded, Plastid-Targeted Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) Indicates a Single Origin for Chromalveolate Plastids , 2003 .

[14]  Christopher J. Tonkin,et al.  Dissecting Apicoplast Targeting in the Malaria Parasite Plasmodium falciparum , 2003, Science.

[15]  N. Lang-Unnasch,et al.  Targeting of a nuclear encoded protein to the apicoplast of Toxoplasma gondii. , 1999, The Journal of eukaryotic microbiology.

[16]  B. Bruce The role of lipids in plastid protein transport , 1998, Plant Molecular Biology.

[17]  D. Bhaya,et al.  Targeting proteins to diatom plastids involves transport through an endoplasmic reticulum , 1991, Molecular and General Genetics MGG.

[18]  J. Soll,et al.  14-3-3 Proteins Form a Guidance Complex with Chloroplast Precursor Proteins in Plants , 2000, Plant Cell.

[19]  B. Bruce,et al.  The paradox of plastid transit peptides: conservation of function despite divergence in primary structure. , 2001, Biochimica et biophysica acta.

[20]  M. Czisch,et al.  Structure, dynamics, and insertion of a chloroplast targeting peptide in mixed micelles. , 2000, Biochemistry.

[21]  G. Bernardi,et al.  Compositional constraints in the extremely GC-poor genome of Plasmodium falciparum. , 1997, Memorias do Instituto Oswaldo Cruz.

[22]  The Arabidopsis Genome Initiative Analysis of the genome sequence of the flowering plant Arabidopsis thaliana , 2000, Nature.

[23]  S. Wessler,et al.  Functional determinants in transit sequences: import and partial maturation by vascular plant chloroplasts of the ribulose-1,5- bisphosphate carboxylase small subunit of Chlamydomonas , 1985, The Journal of cell biology.

[24]  S. Cawley,et al.  Phat--a gene finding program for Plasmodium falciparum. , 2001, Molecular and biochemical parasitology.

[25]  Huanming Yang,et al.  A Draft Sequence of the Rice Genome (Oryza sativa L. ssp. indica) , 2002, Science.

[26]  G. McFadden,et al.  Jam packed genomes – a preliminary, comparative analysis of nucleomorphs , 2002, Genetica.

[27]  H. Strotmann,et al.  Structure of the nuclear encoded γ subunit of CF0CF1 of the diatom Odontella sinensis including its presequence , 1993, FEBS letters.

[28]  A. Grossman,et al.  In vivo characterization of diatom multipartite plastid targeting signals , 2002, Journal of Cell Science.

[29]  M. Kanehisa,et al.  A knowledge base for predicting protein localization sites in eukaryotic cells , 1992, Genomics.

[30]  T. Unnasch,et al.  CIS AND TRANS FACTORS INVOLVED IN APICOPLAST TARGETING IN TOXOPLASMA GONDII , 2003, The Journal of parasitology.

[31]  B. Bruce,et al.  Chloroplast transit peptides: structure, function and evolution. , 2000, Trends in cell biology.

[32]  H. Akashi,et al.  Gene expression and molecular evolution. , 2001, Current opinion in genetics & development.

[33]  D. Roos,et al.  Nuclear-encoded, plastid-targeted genes suggest a single common origin for apicomplexan and dinoflagellate plastids. , 2001, Molecular biology and evolution.

[34]  J. Weber Analysis of sequences from the extremely A + T-rich genome of Plasmodium falciparum. , 1987, Gene.

[35]  S. Perkins,et al.  A MOLECULAR PHYLOGENY OF MALARIAL PARASITES RECOVERED FROM CYTOCHROME b GENE SEQUENCES , 2002, The Journal of parasitology.

[36]  J. Soll,et al.  Phosphorylation of the Transit Sequence of Chloroplast Precursor Proteins (*) , 1996, The Journal of Biological Chemistry.

[37]  Etsuko N. Moriyama,et al.  Codon Usage Bias and tRNA Abundance in Drosophila , 1997, Journal of Molecular Evolution.

[38]  S. Brunak,et al.  SHORT COMMUNICATION Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites , 1997 .

[39]  S. Salzberg,et al.  Interpolated Markov models for eukaryotic gene finding. , 1999, Genomics.

[40]  U. Maier,et al.  Transport of Proteins into Cryptomonads Complex Plastids* , 2000, The Journal of Biological Chemistry.

[41]  G. McFadden,et al.  Processing of an Apicoplast Leader Sequence inPlasmodium falciparum and the Identification of a Putative Leader Cleavage Enzyme* , 2002, The Journal of Biological Chemistry.

[42]  Stephen J Freeland,et al.  A simple model based on mutation and selection explains trends in codon and amino-acid usage and GC composition within and across genomes , 2001, Genome Biology.

[43]  P. Kroth,et al.  Protein Transport into “Complex” Diatom Plastids Utilizes Two Different Targeting Signals* , 1998, The Journal of Biological Chemistry.

[44]  Li Li,et al.  ToxoDB: accessing the Toxoplasma gondii genome , 2003, Nucleic Acids Res..

[45]  I. Small,et al.  Dual targeting to mitochondria and chloroplasts. , 2001, Biochimica et biophysica acta.

[46]  S. Brunak,et al.  Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. , 2000, Journal of molecular biology.

[47]  T. Cavalier-smith,et al.  ENDOMEMBRANE STRUCTURE AND THE CHLOROPLAST PROTEIN TARGETING PATHWAY IN HETEROSIGMA AKASHIWO (RAPHIDOPHYCEAE, CHROMISTA) , 2000 .

[48]  G Bernardi,et al.  Compositional properties of nuclear genes from Plasmodium falciparum. , 1995, Gene.

[49]  Kamel Jabbari,et al.  Synonymous Codon Choices in the Extremely GC-Poor Genome of Plasmodium falciparum: Compositional Constraints and Translational Selection , 1999, Journal of Molecular Evolution.

[50]  G. Singer,et al.  Nucleotide bias causes a genomewide bias in the amino acid composition of proteins. , 2000, Molecular biology and evolution.

[51]  B. Bruce,et al.  In Vitro Interaction between a Chloroplast Transit Peptide and Chloroplast Outer Envelope Lipids Is Sequence-specific and Lipid Class-dependent* , 1996, The Journal of Biological Chemistry.

[52]  A. Grossman,et al.  The gamma subunit of R-phycoerythrin and its possible mode of transport into the plastid of red algae. , 1993, The Journal of biological chemistry.

[53]  M. Parsons,et al.  Analysis of targeting sequences demonstrates that trafficking to the Toxoplasma gondii plastid branches off the secretory system. , 2000, Journal of cell science.

[54]  M. Gething,et al.  BiP-binding Sequences in HIV gp160 , 1999, The Journal of Biological Chemistry.

[55]  F. J. Geske,et al.  Biophysical characterization of a transit peptide directing chloroplast protein import. , 1992, Biochemistry.

[56]  Jonathan E. Allen,et al.  Genome sequence of the human malaria parasite Plasmodium falciparum , 2002, Nature.

[57]  T. McCutchan,et al.  A phylogenetic comparison of gene trees constructed from plastid, mitochondrial and genomic DNA of Plasmodium species. , 2001, Molecular and biochemical parasitology.

[58]  L. Meijer,et al.  Pfnek-1, a NIMA-related kinase from the human malaria parasite Plasmodium falciparum Biochemical properties and possible involvement in MAPK regulation. , 2001, European journal of biochemistry.

[59]  Charles Elkan,et al.  Fitting a Mixture Model By Expectation Maximization To Discover Motifs In Biopolymer , 1994, ISMB.

[60]  A. Hughes,et al.  Biased amino acid composition in repeat regions of Plasmodium antigens. , 1999, Molecular biology and evolution.

[61]  M. Czisch,et al.  The structural flexibility of the preferredoxin transit peptide , 1999, FEBS letters.

[62]  S. Sprang,et al.  Affinity panning of a library of peptides displayed on bacteriophages reveals the binding specificity of BiP , 1993, Cell.

[63]  P. Marlière,et al.  Molecular Evolution of Protein Atomic Composition , 2001, Science.

[64]  P. Keeling,et al.  Nucleus-encoded, plastid-targeted glyceraldehyde-3-phosphate dehydrogenase (GAPDH) indicates a single origin for chromalveolate plastids. , 2003, Molecular biology and evolution.

[65]  G. Bernardi,et al.  Two classes of genes in plants. , 2000, Genetics.

[66]  P. Gans,et al.  A coil-helix instead of a helix-coil motif can be induced in a chloroplast transit peptide from Chlamydomonas reinhardtii. , 1999, European journal of biochemistry.

[67]  Alison G. Smith,et al.  A Single Precursor Protein for Ferrochelatase-I fromArabidopsis Is Imported in Vitro into Both Chloroplasts and Mitochondria* , 1997, The Journal of Biological Chemistry.

[68]  P. Gans,et al.  NMR structures of ferredoxin chloroplastic transit peptide from Chlamydomonas reinhardtii promoted by trifluoroethanol in aqueous solution , 1994, FEBS letters.

[69]  G. McFadden,et al.  Protein trafficking to the plastid of Plasmodium falciparum is via the secretory pathway , 2000, The EMBO journal.

[70]  Jonathan E. Allen,et al.  Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii , 2002, Nature.

[71]  N. Surolia,et al.  Triclosan offers protection against blood stages of malaria by inhibiting enoyl-ACP reductase of Plasmodium falciparum , 2001, Nature Medicine.

[72]  G. von Heijne,et al.  Chloroplast transit peptides the perfect random coil? , 1991, FEBS letters.