Domain Decomposition Preconditioning for High Order Hybrid Discontinuous Galerkin Methods on Tetrahedral Meshes

Hybrid discontinuous Galerkin methods are popular discretization methods in applications from fluid dynamics and many others. Often large scale linear systems arising from elliptic operators have to be solved. We show that standard p-version domain decomposition techniques can be applied, but we have to develop new technical tools to prove poly-logarithmic condition number estimates, in particular on tetrahedral meshes.

[1]  Luca F. Pavarino,et al.  BDDC and FETI-DP preconditioners for spectral element discretizations , 2007 .

[2]  CLARK R. DOHRMANN,et al.  A Preconditioner for Substructuring Based on Constrained Energy Minimization , 2003, SIAM J. Sci. Comput..

[3]  Weiming Cao,et al.  An Additive Schwarz Method for the h - b Version of the Finite Element Method in Three Dimensions , 1998 .

[4]  Arnd Meyer,et al.  The approximate Dirichlet Domain Decomposition method. Part I: An algebraic approach , 1991, Computing.

[5]  Mario A. Casarin,et al.  Quasi-Optimal Schwarz Methods for the Conforming Spectral Element Discretization , 1995 .

[6]  Peter Paule,et al.  A Mathematica Version of Zeilberger's Algorithm for Proving Binomial Coefficient Identities , 1995, J. Symb. Comput..

[7]  Mark Ainsworth,et al.  A Preconditioner Based on Domain Decomposition for H-P Finite-Element Approximation on Quasi-Uniform Meshes , 1996 .

[8]  Zi-Cai Li,et al.  Schwarz Alternating Method , 1998 .

[9]  I. Babuska,et al.  Efficient preconditioning for the p -version finite element method in two dimensions , 1991 .

[10]  E. Stephan,et al.  An iterative substructuring method for the hp‐version of the BEM on quasi‐uniform triangular meshes , 2007 .

[11]  Olof B. Widlund,et al.  Towards a Unified Theory of Domain Decomposition Algorithms for Elliptic Problems , 2015 .

[12]  Guido Kanschat,et al.  A multilevel discontinuous Galerkin method , 2003, Numerische Mathematik.

[13]  U. Langer,et al.  On Fast Domain Decomposition Solving Procedures for hp-Discretizations of 3-D Elliptic Problems , 2003 .

[14]  Olof B. Widlund,et al.  A Polylogarithmic Bound for an Iterative Substructuring Method for Spectral Elements in Three Dimensions , 1996 .

[15]  Olof B. Widlund,et al.  FETI‐DP, BDDC, and block Cholesky methods , 2006 .

[16]  Endre Süli,et al.  Optimal Error Estimates for the hp-Version Interior Penalty Discontinuous Galerkin Finite Element Method , 2005 .

[17]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .

[18]  R. Glowinski,et al.  Third International Symposium on Domain Decomposition Methods for Partial Differential Equations , 1990 .

[19]  R. Stenberg,et al.  On a mixed discontinuous Galerkin method , 2008 .

[20]  P. Oswald,et al.  Remarks on the Abstract Theory of Additive and Multiplicative Schwarz Algorithms , 1995 .

[21]  U. Langer,et al.  Domain Decomposition Methods and Preconditioning , 2004 .

[22]  S. Rebay,et al.  High-Order Accurate Discontinuous Finite Element Solution of the 2D Euler Equations , 1997 .

[23]  D. Griffin,et al.  Finite-Element Analysis , 1975 .

[24]  Raytcho D. Lazarov,et al.  Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems , 2009, SIAM J. Numer. Anal..

[25]  L. Demkowicz One and two dimensional elliptic and Maxwell problems , 2006 .

[26]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[27]  Moshe Dubiner Spectral methods on triangles and other domains , 1991 .

[28]  Chi-Wang Shu,et al.  Discontinuous Galerkin Methods: Theory, Computation and Applications , 2011 .

[29]  G. Karniadakis,et al.  Spectral/hp Element Methods for Computational Fluid Dynamics , 2005 .

[30]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[31]  I. Bica,et al.  Iterative substructuring algorithms for the p-version finite element method for elliptic problems , 1997 .

[32]  Arnd Meyer,et al.  The approximate Dirichlet Domain Decomposition method. Part II: Applications to 2nd-order Elliptic B.V.P.s , 2005, Computing.

[33]  Jens Markus Melenk,et al.  Additive Schwarz preconditioning for p-version triangular and tetrahedral finite elements , 2007 .

[34]  M. A. Casarin,et al.  Low-energy basis preconditioning for elliptic substructured solvers based on unstructured spectral/ hp element discretization , 2001 .

[35]  Luca F. Pavarino Additive Schwarz methods for thep-version finite element method , 1993 .

[36]  C. Schwab P- and hp- finite element methods : theory and applications in solid and fluid mechanics , 1998 .

[37]  Rafael Muñoz-Sola,et al.  Polynomial Liftings on a Tetrahedron and Applications to the h - p Version of the Finite Element Method in Three Dimensions , 1997 .

[38]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[39]  Olof B. Widlund,et al.  DUAL-PRIMAL FETI METHODS FOR THREE-DIMENSIONAL ELLIPTIC PROBLEMS WITH HETEROGENEOUS COEFFICIENTS , 2022 .

[40]  Guido Kanschat,et al.  A Note on Discontinuous Galerkin Divergence-free Solutions of the Navier–Stokes Equations , 2007, J. Sci. Comput..

[41]  Reinhold Schneider,et al.  Multiresolution weighted norm equivalences and applications , 2004, Numerische Mathematik.

[42]  Søren Jensen,et al.  Domain decomposition preconditioning in the hierarchical p -version of the finite element method , 1999 .

[43]  Norbert Heuer,et al.  An extension theorem for polynomials on triangles , 2008 .

[44]  Paul Houston,et al.  A Class of Domain Decomposition Preconditioners for hp-Discontinuous Galerkin Finite Element Methods , 2011, J. Sci. Comput..