Gaussian states provide universal and versatile quantum reservoir computing

We acknowledge the Spanish State Research Agency,through the Severo Ochoa and Maria de Maeztu Programfor Centers and Units of Excellence in R&D (MDM-2017-0711), CSIC extension to EPheQuCS (FIS2016-78010-P),and CSIC Quantum Technologies PTI-001. The work ofMCS has been supported by MICINN/AEI/FEDER andthe University of the Balearic Islands through a ”Ramony Cajal Fellowship (RYC-2015-18140). VP acknowledgesfinancial support from the European Research Council under the Consolidator Grant COQCOoN (Grant No.820079).

[1]  Mantas Lukosevicius,et al.  A Practical Guide to Applying Echo State Networks , 2012, Neural Networks: Tricks of the Trade.

[2]  Herbert Jaeger,et al.  Reservoir computing approaches to recurrent neural network training , 2009, Comput. Sci. Rev..

[3]  Jiayin Chen,et al.  Learning nonlinear input–output maps with dissipative quantum systems , 2019, Quantum Information Processing.

[4]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[5]  Benjamin Schrauwen,et al.  Information Processing Capacity of Dynamical Systems , 2012, Scientific Reports.

[6]  Changpeng Shao,et al.  A quantum model of feed-forward neural networks with unitary learning algorithms , 2020, Quantum Information Processing.

[7]  Su Yang,et al.  An echo state network architecture based on quantum logic gate and its optimization , 2020, Neurocomputing.

[8]  Serge Massar,et al.  All-optical Reservoir Computing , 2012, Optics express.

[9]  Laurent Larger,et al.  High-Speed Photonic Reservoir Computing Using a Time-Delay-Based Architecture: Million Words per Second Classification , 2017 .

[10]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[11]  Tara N. Sainath,et al.  Deep Neural Networks for Acoustic Modeling in Speech Recognition , 2012 .

[12]  E. Torrontegui,et al.  Unitary quantum perceptron as efficient universal approximator , 2018, EPL (Europhysics Letters).

[13]  Kae Nemoto,et al.  Efficient classical simulation of continuous variable quantum information processes. , 2002, Physical review letters.

[14]  Hitoshi Kubota,et al.  Role of non-linear data processing on speech recognition task in the framework of reservoir computing , 2019, Scientific Reports.

[15]  Naoki Yamamoto,et al.  Temporal Information Processing on Noisy Quantum Computers , 2020, ArXiv.

[16]  Herbert Jaeger,et al.  A tutorial on training recurrent neural networks , covering BPPT , RTRL , EKF and the " echo state network " approach - Semantic Scholar , 2005 .

[17]  Andrzej Opala,et al.  Quantum reservoir processing , 2018, npj Quantum Information.

[18]  Davide Pierangeli,et al.  Programming multi-level quantum gates in disordered computing reservoirs via machine learning , 2019, Optics express.

[19]  Mário Ziman,et al.  Programmable Quantum Gate Arrays , 2001 .

[20]  M. C. Soriano,et al.  Advances in photonic reservoir computing , 2017 .

[21]  Scott Aaronson,et al.  The computational complexity of linear optics , 2010, STOC '11.

[22]  Debanjan Bhowmik,et al.  Supervised learning with a quantum classifier using multi-level systems , 2019, Quantum Inf. Process..

[23]  Tobias J. Osborne,et al.  Training deep quantum neural networks , 2020, Nature Communications.

[24]  Herbert Jaeger,et al.  The''echo state''approach to analysing and training recurrent neural networks , 2001 .

[25]  Henry Markram,et al.  Real-Time Computing Without Stable States: A New Framework for Neural Computation Based on Perturbations , 2002, Neural Computation.

[26]  Peter Wittek,et al.  Quantum Machine Learning: What Quantum Computing Means to Data Mining , 2014 .

[27]  Geert Morthier,et al.  Experimental demonstration of reservoir computing on a silicon photonics chip , 2014, Nature Communications.

[28]  Jean-Pierre Martens,et al.  Large Vocabulary Continuous Speech Recognition With Reservoir-Based Acoustic Models , 2014, IEEE Signal Processing Letters.

[29]  Leon O. Chua,et al.  Fading memory and the problem of approximating nonlinear operators with volterra series , 1985 .

[30]  Harald Haas,et al.  Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication , 2004, Science.

[31]  T. Ralph,et al.  Universal quantum computation with continuous-variable cluster states. , 2006, Physical review letters.

[32]  Wei Lu,et al.  The future of electronics based on memristive systems , 2018, Nature Electronics.

[33]  I. Fuentes,et al.  Generating Multimode Entangled Microwaves with a Superconducting Parametric Cavity , 2017, Physical Review Applied.

[34]  Nicolas Treps,et al.  Reconfigurable optical implementation of quantum complex networks , 2017, 1708.08726.

[35]  Juan-Pablo Ortega,et al.  Universal discrete-time reservoir computers with stochastic inputs and linear readouts using non-homogeneous state-affine systems , 2017, J. Mach. Learn. Res..

[36]  Timothy C. H. Liew,et al.  Universal quantum reservoir computing , 2020 .

[37]  Jonathan Dong,et al.  Optical Reservoir Computing Using Multiple Light Scattering for Chaotic Systems Prediction , 2019, IEEE Journal of Selected Topics in Quantum Electronics.

[38]  Keisuke Fujii,et al.  Boosting Computational Power through Spatial Multiplexing in Quantum Reservoir Computing , 2018, Physical Review Applied.

[39]  Shane Legg,et al.  Human-level control through deep reinforcement learning , 2015, Nature.

[40]  Ievgeniia Oshurko Quantum Machine Learning , 2020, Quantum Computing.

[41]  Nils Bertschinger,et al.  Real-Time Computation at the Edge of Chaos in Recurrent Neural Networks , 2004, Neural Computation.

[42]  Kohei Nakajima,et al.  Machine learning with controllable quantum dynamics of a nuclear spin ensemble in a solid , 2018, 1806.10910.

[43]  Olivier Pfister,et al.  Experimental realization of multipartite entanglement of 60 modes of a quantum optical frequency comb. , 2013, Physical review letters.

[44]  Jeffrey L. Elman,et al.  Finding Structure in Time , 1990, Cogn. Sci..

[45]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[46]  Jason Cong,et al.  Scaling for edge inference of deep neural networks , 2018 .

[47]  Daniel Brunner,et al.  Parallel photonic information processing at gigabyte per second data rates using transient states , 2013, Nature Communications.

[48]  Warit Asavanant,et al.  Generation of time-domain-multiplexed two-dimensional cluster state , 2019, Science.

[49]  U. Böttger,et al.  Beyond von Neumann—logic operations in passive crossbar arrays alongside memory operations , 2012, Nanotechnology.

[50]  Wojciech M. Czarnecki,et al.  Grandmaster level in StarCraft II using multi-agent reinforcement learning , 2019, Nature.

[51]  Jyrki Piilo,et al.  Non-Markovianity over Ensemble Averages in Quantum Complex Networks , 2017, Open Syst. Inf. Dyn..

[52]  Jaideep Pathak,et al.  Model-Free Prediction of Large Spatiotemporally Chaotic Systems from Data: A Reservoir Computing Approach. , 2018, Physical review letters.

[53]  Juan-Pablo Ortega,et al.  Echo state networks are universal , 2018, Neural Networks.

[54]  Andrew S. Cassidy,et al.  A million spiking-neuron integrated circuit with a scalable communication network and interface , 2014, Science.

[55]  L. C. G. Govia,et al.  Quantum reservoir computing with a single nonlinear oscillator , 2020, Physical Review Research.

[56]  Albert Schliesser,et al.  Multimode optomechanical system in the quantum regime , 2016, Proceedings of the National Academy of Sciences.

[57]  Travis S. Humble,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[58]  Razvan Pascanu,et al.  On the difficulty of training recurrent neural networks , 2012, ICML.

[59]  Seth Lloyd,et al.  Continuous-variable quantum neural networks , 2018, Physical Review Research.

[60]  S. Olivares,et al.  Gaussian states in continuous variable quantum information , 2005, quant-ph/0503237.

[61]  Michael I. Jordan,et al.  Machine learning: Trends, perspectives, and prospects , 2015, Science.

[62]  M. Kubát An Introduction to Machine Learning , 2017, Springer International Publishing.

[63]  Zoran Konkoli,et al.  On Reservoir Computing: From Mathematical Foundations to Unconventional Applications , 2017 .

[64]  A. Friedman Foundations of modern analysis , 1970 .

[65]  H. Neven,et al.  Characterizing quantum supremacy in near-term devices , 2016, Nature Physics.

[66]  Daniel J. Gauthier,et al.  Rapid Time Series Prediction with a Hardware-Based Reservoir Computer , 2018, Chaos.

[67]  A. Crespi,et al.  Integrated multimode interferometers with arbitrary designs for photonic boson sampling , 2013, Nature Photonics.

[68]  Maria Schuld,et al.  The quest for a Quantum Neural Network , 2014, Quantum Information Processing.

[69]  Roger Melko,et al.  Quantum Boltzmann Machine , 2016, 1601.02036.

[70]  Gouhei Tanaka,et al.  Reservoir Computing With Spin Waves Excited in a Garnet Film , 2018, IEEE Access.

[71]  Gerardo Adesso,et al.  Continuous Variable Quantum Information: Gaussian States and Beyond , 2014, Open Syst. Inf. Dyn..

[72]  Y. Cai,et al.  Multimode entanglement in reconfigurable graph states using optical frequency combs , 2017, Nature Communications.

[73]  Hans-J. Briegel,et al.  Machine learning \& artificial intelligence in the quantum domain , 2017, ArXiv.

[74]  E. Schrödinger Der stetige Übergang von der Mikro- zur Makromechanik , 1926, Naturwissenschaften.

[75]  R. Glauber Coherent and incoherent states of the radiation field , 1963 .

[76]  Alicia J. Kollár,et al.  Hyperbolic lattices in circuit quantum electrodynamics , 2018, Nature.

[77]  Fabio Sciarrino,et al.  Photonic implementation of boson sampling: a review , 2019, Advanced Photonics.

[78]  Benjamin Schrauwen,et al.  An experimental unification of reservoir computing methods , 2007, Neural Networks.

[79]  Henry Markram,et al.  On the computational power of circuits of spiking neurons , 2004, J. Comput. Syst. Sci..

[80]  Damien Querlioz,et al.  Neuromorphic computing with nanoscale spintronic oscillators , 2017, Nature.

[81]  Toshiyuki Yamane,et al.  Recent Advances in Physical Reservoir Computing: A Review , 2018, Neural Networks.

[82]  J. Morton,et al.  Magnetic resonance with squeezed microwaves , 2016, 1610.03329.