Spatio-temporal refinement using a discontinuous Galerkin approach for elastodynamic in a high performance computing framework. (Raffinement spatio-temporel par une approche de Galerkin discontinue en élastodynamique pour le calcul haute performance)

This thesis studies local mesh refinement both in time and space for the second order elastodynamic equation in a high performance computing context. The objective is to develop numerical methods to treat small heterogeneities that have global impact on wave propagation. We use an internal penalty discontinuous Galerkin finite element approach for its flexibity and parallelization capabilities. The elasto-acoustic finite element formulation we discuss is elasto-acoustic in order to handle local acoustic heterogeneities. We also propose an optimized penalty term more suited to the elastodynamic equation that results in better CFL condition. We improve a second order PML formulation with an original time discretization that results in a more stable formulation. Using the p-adaptivity and nonconforming mesh capabilities of discontinuous Galerkin methods combined with a local time stepping method, we greatly reduce the high computational cost of local refinements. These methods have been implemented in C++, using template metaprogramming, in a distributed memory (MPI) and shared memory (OpenMP) parallel code. Finally, we show the potential of our methods on validation test cases and on more realistic test cases with medium including hydrofractures.

[1]  W. H. Reed,et al.  Triangular mesh methods for the neutron transport equation , 1973 .

[2]  A. Majda,et al.  Absorbing boundary conditions for the numerical simulation of waves , 1977 .

[3]  Gunilla Kreiss,et al.  A new absorbing layer for elastic waves , 2006, J. Comput. Phys..

[4]  Julien Diaz,et al.  Energy Conserving Explicit Local Time Stepping for Second-Order Wave Equations , 2007, SIAM J. Sci. Comput..

[5]  Bengt Fornberg,et al.  The pseudospectral method; accurate representation of interfaces in elastic wave calculations , 1988 .

[6]  E. Toro,et al.  An arbitrary high-order Discontinuous Galerkin method for elastic waves on unstructured meshes - V. Local time stepping and p-adaptivity , 2007 .

[7]  M. Wheeler,et al.  Discontinuous Galerkin methods for coupled flow and reactive transport problems , 2005 .

[8]  Paul G. Richards,et al.  Quantitative Seismology: Theory and Methods , 1980 .

[9]  O. Zienkiewicz,et al.  Finite elements and approximation , 1983 .

[10]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[11]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[12]  Julien Diaz,et al.  Multi-level explicit local time-stepping methods for second-order wave equations , 2015 .

[13]  Gary Cohen Higher-Order Numerical Methods for Transient Wave Equations , 2001 .

[14]  Zhang Jianfeng,et al.  Elastic wave modelling in 3D heterogeneous media: 3D grid method , 2002 .

[15]  S. Piperno Symplectic local time-stepping in non-dissipative DGTD methods applied to wave propagation problems , 2006 .

[16]  D. Givoli,et al.  High-order non-reflecting boundary scheme for time-dependent waves , 2003 .

[17]  J. de la Puente,et al.  The Potential of Discontinuous Galerkin Methods for Full Waveform Tomography , 2010 .

[18]  Douglas Gregor,et al.  C++ Templates: The Complete Guide , 2002 .

[19]  Stéphane Lanteri,et al.  Locally implicit discontinuous Galerkin method for time domain electromagnetics , 2010, J. Comput. Phys..

[20]  B. Rivière,et al.  Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. Part I , 1999 .

[21]  Mary F. Wheeler,et al.  Compatible algorithms for coupled flow and transport , 2004 .

[22]  Patrick Joly,et al.  A Conservative Space-time Mesh Refinement Method for the 1-D Wave Equation. Part I: Construction , 2003, Numerische Mathematik.

[23]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .

[24]  Moshe Reshef,et al.  A nonreflecting boundary condition for discrete acoustic and elastic wave equations , 1985 .

[25]  C. H. Dix,et al.  Reflection and Refraction of Progressive Seismic Waves , 1963 .

[26]  Zhang Jianfeng,et al.  P–SV-wave propagation in heterogeneous media: grid method , 1999 .

[27]  J. Virieux P-SV wave propagation in heterogeneous media: Velocity‐stress finite‐difference method , 1986 .

[28]  Béatrice Rivière,et al.  Discontinuous Galerkin methods for solving elliptic and parabolic equations - theory and implementation , 2008, Frontiers in applied mathematics.

[29]  Anthony Cohn,et al.  Marcus , 2004, BMJ : British Medical Journal.

[30]  T. Fouquet Raffinement de maillage spatio-temporel pour les équations de Maxwell , 2000 .

[31]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[32]  John A. Hudson,et al.  Numerical modelling of seismic waves scattered by hydrofractures: application of the indirect boundary element method , 1998 .

[33]  R.J. Luebbers,et al.  FDTD local grid with material traverse , 1996, IEEE Antennas and Propagation Society International Symposium. 1996 Digest.

[34]  Patrick Joly,et al.  A Conservative Space-time Mesh Refinement Method for the 1-D Wave Equation. Part II: Analysis , 2003, Numerische Mathematik.

[35]  Géza Seriani,et al.  Numerical simulation of interface waves by high‐order spectral modeling techniques , 1992 .

[36]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[37]  T. Hagstrom Radiation boundary conditions for the numerical simulation of waves , 1999, Acta Numerica.

[38]  N. Shuley,et al.  A method for incorporating different sized cells into the finite-difference time-domain analysis technique , 1992, IEEE Microwave and Guided Wave Letters.

[39]  Andreas C. Cangellaris,et al.  A general approach for the development of unsplit-field time-domain implementations of perfectly matched layers for FDTD grid truncation , 1996 .

[40]  Eliane B'ecache,et al.  Remarks on the stability of Cartesian PMLs in corners , 2011 .

[41]  Julien Diaz,et al.  Stability analysis of the Interior Penalty Discontinuous Galerkin method for the wave equation , 2010 .

[42]  Robert L. Higdon,et al.  Absorbing boundary conditions for di erence approxima-tions to the multidimensional wave equation , 1986 .

[43]  J. Virieux,et al.  An hp-adaptive discontinuous Galerkin finite-element method for 3-D elastic wave modelling , 2010 .

[44]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[45]  M. Wheeler An Elliptic Collocation-Finite Element Method with Interior Penalties , 1978 .

[46]  Jerónimo Rodríguez,et al.  Raffinement de Maillage Spatio-Temporel pour les Équations de l'Élastodynamique. (Space-Time Mesh Refinement for Elastodynamic Equations) , 2004 .

[47]  A. Ern,et al.  Mathematical Aspects of Discontinuous Galerkin Methods , 2011 .

[48]  Thomas Hagstrom,et al.  A new auxiliary variable formulation of high-order local radiation boundary conditions: corner compatibility conditions and extensions to first-order systems , 2004 .

[49]  Enru Liu,et al.  Numerical simulation of wave propagation in media with discrete distributions of fractures: effects of fracture sizes and spatial distributions , 2003 .

[50]  I. S. Kim,et al.  A local mesh refinement algorithm for the time domain-finite difference method using Maxwell's curl equations , 1990 .

[51]  Kenneth Duru,et al.  Discrete stability of perfectly matched layers for anisotropic wave equations in first and second order formulation , 2013 .

[52]  Jan S. Hesthaven,et al.  Long Time Behavior of the Perfectly Matched Layer Equations in Computational Electromagnetics , 2002, J. Sci. Comput..

[53]  Gunilla Kreiss,et al.  Application of a perfectly matched layer to the nonlinear wave equation , 2007 .

[54]  Edip Baysal,et al.  Forward modeling by a Fourier method , 1982 .

[55]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[56]  T. Fouquet,et al.  Conservative space-time mesh refinement methods for the FDTD solution of Maxwell's equations , 2006 .

[57]  P. Moczo,et al.  The finite-difference time-domain method for modeling of seismic wave propagation , 2007 .

[58]  A. T. Hoop,et al.  A modification of cagniard’s method for solving seismic pulse problems , 1960 .

[59]  Chrysoula Tsogka,et al.  Application of the PML absorbing layer model to the linear elastodynamic problem in anisotropic hete , 1998 .

[60]  Robert L. Higdon,et al.  Numerical absorbing boundary conditions for the wave equation , 1987 .

[61]  O. C. Zienkiewicz,et al.  The Finite Element Method for Solid and Structural Mechanics , 2013 .

[62]  Imbo Sim,et al.  Nonreflecting boundary conditions for time-dependent wave propagation , 2010 .

[63]  Improved Energy Estimates for Interior Penalty, Constrained and Discontinuous Galerkin Methods for Elliptical Problems Part I. Improved Energy Estimates for Interior Penalty, Constrained and Discontinuous Galerkin Methods for Elliptic Problems , 1999 .