Spatio-temporal refinement using a discontinuous Galerkin approach for elastodynamic in a high performance computing framework. (Raffinement spatio-temporel par une approche de Galerkin discontinue en élastodynamique pour le calcul haute performance)
暂无分享,去创建一个
[1] W. H. Reed,et al. Triangular mesh methods for the neutron transport equation , 1973 .
[2] A. Majda,et al. Absorbing boundary conditions for the numerical simulation of waves , 1977 .
[3] Gunilla Kreiss,et al. A new absorbing layer for elastic waves , 2006, J. Comput. Phys..
[4] Julien Diaz,et al. Energy Conserving Explicit Local Time Stepping for Second-Order Wave Equations , 2007, SIAM J. Sci. Comput..
[5] Bengt Fornberg,et al. The pseudospectral method; accurate representation of interfaces in elastic wave calculations , 1988 .
[6] E. Toro,et al. An arbitrary high-order Discontinuous Galerkin method for elastic waves on unstructured meshes - V. Local time stepping and p-adaptivity , 2007 .
[7] M. Wheeler,et al. Discontinuous Galerkin methods for coupled flow and reactive transport problems , 2005 .
[8] Paul G. Richards,et al. Quantitative Seismology: Theory and Methods , 1980 .
[9] O. Zienkiewicz,et al. Finite elements and approximation , 1983 .
[10] D. Arnold. An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .
[11] P. Cochat,et al. Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.
[12] Julien Diaz,et al. Multi-level explicit local time-stepping methods for second-order wave equations , 2015 .
[13] Gary Cohen. Higher-Order Numerical Methods for Transient Wave Equations , 2001 .
[14] Zhang Jianfeng,et al. Elastic wave modelling in 3D heterogeneous media: 3D grid method , 2002 .
[15] S. Piperno. Symplectic local time-stepping in non-dissipative DGTD methods applied to wave propagation problems , 2006 .
[16] D. Givoli,et al. High-order non-reflecting boundary scheme for time-dependent waves , 2003 .
[17] J. de la Puente,et al. The Potential of Discontinuous Galerkin Methods for Full Waveform Tomography , 2010 .
[18] Douglas Gregor,et al. C++ Templates: The Complete Guide , 2002 .
[19] Stéphane Lanteri,et al. Locally implicit discontinuous Galerkin method for time domain electromagnetics , 2010, J. Comput. Phys..
[20] B. Rivière,et al. Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. Part I , 1999 .
[21] Mary F. Wheeler,et al. Compatible algorithms for coupled flow and transport , 2004 .
[22] Patrick Joly,et al. A Conservative Space-time Mesh Refinement Method for the 1-D Wave Equation. Part I: Construction , 2003, Numerische Mathematik.
[23] J. Hesthaven,et al. Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .
[24] Moshe Reshef,et al. A nonreflecting boundary condition for discrete acoustic and elastic wave equations , 1985 .
[25] C. H. Dix,et al. Reflection and Refraction of Progressive Seismic Waves , 1963 .
[26] Zhang Jianfeng,et al. P–SV-wave propagation in heterogeneous media: grid method , 1999 .
[27] J. Virieux. P-SV wave propagation in heterogeneous media: Velocity‐stress finite‐difference method , 1986 .
[28] Béatrice Rivière,et al. Discontinuous Galerkin methods for solving elliptic and parabolic equations - theory and implementation , 2008, Frontiers in applied mathematics.
[29] Anthony Cohn,et al. Marcus , 2004, BMJ : British Medical Journal.
[30] T. Fouquet. Raffinement de maillage spatio-temporel pour les équations de Maxwell , 2000 .
[31] R. LeVeque. Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .
[32] John A. Hudson,et al. Numerical modelling of seismic waves scattered by hydrofractures: application of the indirect boundary element method , 1998 .
[33] R.J. Luebbers,et al. FDTD local grid with material traverse , 1996, IEEE Antennas and Propagation Society International Symposium. 1996 Digest.
[34] Patrick Joly,et al. A Conservative Space-time Mesh Refinement Method for the 1-D Wave Equation. Part II: Analysis , 2003, Numerische Mathematik.
[35] Géza Seriani,et al. Numerical simulation of interface waves by high‐order spectral modeling techniques , 1992 .
[36] Jean-Pierre Berenger,et al. A perfectly matched layer for the absorption of electromagnetic waves , 1994 .
[37] T. Hagstrom. Radiation boundary conditions for the numerical simulation of waves , 1999, Acta Numerica.
[38] N. Shuley,et al. A method for incorporating different sized cells into the finite-difference time-domain analysis technique , 1992, IEEE Microwave and Guided Wave Letters.
[39] Andreas C. Cangellaris,et al. A general approach for the development of unsplit-field time-domain implementations of perfectly matched layers for FDTD grid truncation , 1996 .
[40] Eliane B'ecache,et al. Remarks on the stability of Cartesian PMLs in corners , 2011 .
[41] Julien Diaz,et al. Stability analysis of the Interior Penalty Discontinuous Galerkin method for the wave equation , 2010 .
[42] Robert L. Higdon,et al. Absorbing boundary conditions for di erence approxima-tions to the multidimensional wave equation , 1986 .
[43] J. Virieux,et al. An hp-adaptive discontinuous Galerkin finite-element method for 3-D elastic wave modelling , 2010 .
[44] Vipin Kumar,et al. A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..
[45] M. Wheeler. An Elliptic Collocation-Finite Element Method with Interior Penalties , 1978 .
[46] Jerónimo Rodríguez,et al. Raffinement de Maillage Spatio-Temporel pour les Équations de l'Élastodynamique. (Space-Time Mesh Refinement for Elastodynamic Equations) , 2004 .
[47] A. Ern,et al. Mathematical Aspects of Discontinuous Galerkin Methods , 2011 .
[48] Thomas Hagstrom,et al. A new auxiliary variable formulation of high-order local radiation boundary conditions: corner compatibility conditions and extensions to first-order systems , 2004 .
[49] Enru Liu,et al. Numerical simulation of wave propagation in media with discrete distributions of fractures: effects of fracture sizes and spatial distributions , 2003 .
[50] I. S. Kim,et al. A local mesh refinement algorithm for the time domain-finite difference method using Maxwell's curl equations , 1990 .
[51] Kenneth Duru,et al. Discrete stability of perfectly matched layers for anisotropic wave equations in first and second order formulation , 2013 .
[52] Jan S. Hesthaven,et al. Long Time Behavior of the Perfectly Matched Layer Equations in Computational Electromagnetics , 2002, J. Sci. Comput..
[53] Gunilla Kreiss,et al. Application of a perfectly matched layer to the nonlinear wave equation , 2007 .
[54] Edip Baysal,et al. Forward modeling by a Fourier method , 1982 .
[55] K. Yee. Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .
[56] T. Fouquet,et al. Conservative space-time mesh refinement methods for the FDTD solution of Maxwell's equations , 2006 .
[57] P. Moczo,et al. The finite-difference time-domain method for modeling of seismic wave propagation , 2007 .
[58] A. T. Hoop,et al. A modification of cagniard’s method for solving seismic pulse problems , 1960 .
[59] Chrysoula Tsogka,et al. Application of the PML absorbing layer model to the linear elastodynamic problem in anisotropic hete , 1998 .
[60] Robert L. Higdon,et al. Numerical absorbing boundary conditions for the wave equation , 1987 .
[61] O. C. Zienkiewicz,et al. The Finite Element Method for Solid and Structural Mechanics , 2013 .
[62] Imbo Sim,et al. Nonreflecting boundary conditions for time-dependent wave propagation , 2010 .