Analyzing the (1, ) Evolution Strategy via Stochastic Approximation Methods

The main objective of this paper is to analyze the (1, ) evolution strategy by use of stochastic approximation methods. Both constant and decreasing step size algorithms are studied. Convergence and estimation error bounds for the (1, ) evolution strategy are developed. First the algorithm is converted to a recursively defined scheme of stochastic approximation type. Then the analysis is carried out by using the analytic tools from stochastic approximation. In lieu of examining the discrete iterates, suitably scaled sequences are defined. These interpolated sequences are then studied in detail. It is shown that the limits of the sequences have natural connections to certain continuous time dynamical systems.

[1]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[2]  Günter Rudolph,et al.  Convergence of non-elitist strategies , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[3]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[4]  H. Schwefel,et al.  Establishing connections between evolutionary algorithms and stochastic approximation , 1995 .

[5]  G. Yin,et al.  Asymptotically optimal rate of convergence of smoothed stochastic recursive algorithms , 1994 .

[6]  H. P. Schwefel,et al.  Numerische Optimierung von Computermodellen mittels der Evo-lutionsstrategie , 1977 .

[7]  Thomas Bäck,et al.  An Overview of Evolutionary Algorithms for Parameter Optimization , 1993, Evolutionary Computation.

[8]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[9]  H. Kushner,et al.  Asymptotic properties of distributed and communication stochastic approximation algorithms , 1987 .

[10]  Harold J. Kushner,et al.  Approximation and Weak Convergence Methods for Random Processes , 1984 .

[11]  S. Kotz,et al.  Symmetric Multivariate and Related Distributions , 1989 .

[12]  G. Yin,et al.  Adaptive filtering with averaging , 1995 .

[13]  Hans-Paul Schwefel,et al.  Evolutionary Programming and Evolution Strategies: Similarities and Differences , 1993 .

[14]  John H. Holland,et al.  Outline for a Logical Theory of Adaptive Systems , 1962, JACM.

[15]  Hans-Paul Schwefel,et al.  Numerical Optimization of Computer Models , 1982 .

[16]  Pierre Priouret,et al.  Adaptive Algorithms and Stochastic Approximations , 1990, Applications of Mathematics.

[17]  Harold J. Kushner,et al.  wchastic. approximation methods for constrained and unconstrained systems , 1978 .

[18]  Kenneth Alan De Jong,et al.  An analysis of the behavior of a class of genetic adaptive systems. , 1975 .

[19]  Y. Chow Local Convergence of Martingales and the Law of Large Numbers , 1965 .