Capacitive RF discharges modelled by particle-in-cell Monte Carlo simulation. I. Analysis of numerical techniques

Particle-in-cell Monte Carlo simulation has become a very effective tool in exploring processing plasmas and in particular capacitive RF discharges. We describe the conventional particle-in-cell (PIC) simulation and its limitations in terms of computational efficiency, review the implicit subcycling methods used to improve computational efficiency for many problems, and analyse conventional and implicit subcycling PIC simulation performances on an RF discharge model. Implementation of the implicit subcycling scheme in our bounded one-dimensional electrostatic code, PDP, resulted in an order of magnitude reduction in the simulation run time when the accuracy conditions were satisfied.

[1]  E. Bauer Interaction of slow electrons with surfaces , 1970 .

[2]  J. Boeuf,et al.  A Monte Carlo analysis of an electron swarm in a nonuniform field: the cathode region of a glow discharge in helium , 1982 .

[3]  John P. Verboncoeur,et al.  Simultaneous potential and circuit solution for 1D bounded plasma particle simulation codes , 1990 .

[4]  Michael A. Lieberman,et al.  Analytical solution for capacitive RF sheath , 1988 .

[5]  Benjamin Alexandrovich,et al.  Measurement of electron energy distribution in low-pressure RF discharges , 1992 .

[6]  M. Kushner,et al.  Numerical investigation of the kinetics and chemistry of rf glow discharge plasmas sustained in He, N2, O2, He/N2/O2, He/CF4/O2, and SiH4/NH3 using a Monte Carlo-fluid hybrid model , 1992 .

[7]  R. Hockney,et al.  Measurements of collision and heating times in a two-dimensional thermal computer plasma , 1971 .

[8]  Charles K. Birdsall,et al.  Particle-in-cell charged-particle simulations, plus Monte Carlo collisions with neutral atoms, PIC-MCC , 1991 .

[9]  Brian E. Thompson,et al.  Monte Carlo simulation of ion transport through rf glow‐discharge sheaths , 1988 .

[10]  Sternberg,et al.  Dynamic model of the electrode sheaths in symmetrically driven rf discharges. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[11]  J. Bardsley,et al.  Monte Carlo simulation of ion motion in drift tubes , 1977 .

[12]  Hopkins,et al.  Anomalous sheath heating in a low pressure rf discharge in nitrogen. , 1992, Physical review letters.

[13]  J. Boeuf,et al.  Pseudospark discharges via computer simulation , 1991 .

[14]  Evangelos Gogolides,et al.  Comparison of experimental measurements and model predictions for radio‐frequency Ar and SF6 discharges , 1989 .

[15]  M. Lieberman,et al.  Sheath voltage ratio for asymmetric RF discharges , 1990, 1990 Plasma Science IEEE Conference Record - Abstracts.

[16]  Michael A. Lieberman,et al.  Macroscopic modeling of radio‐frequency plasma discharges , 1989 .

[17]  K. Jensen,et al.  A Continuum Model of DC and RF Discharges , 1986, IEEE Transactions on Plasma Science.

[18]  David B. Graves,et al.  Electron heating in low‐pressure rf glow discharges , 1990 .

[19]  W. Lawson Particle simulation of bounded 1D Plasma Systems , 1989 .

[20]  Kenji Kobayashi,et al.  Plasma sheath thickness in radio-frequency discharges , 1990 .

[21]  R. Boswell,et al.  Numerical modeling of low-pressure RF plasmas , 1990 .

[22]  Bruce I. Cohen,et al.  Implicit time integration for plasma simulation , 1982 .

[23]  W. H. Cramer Elastic and Inelastic Scattering of Low‐Velocity Ions: Ne+ in A, A+ in Ne, and A+ in A , 1959 .

[24]  A. B. Langdon,et al.  Performance and optimization of direct implicit particle simulation , 1989 .

[25]  H. Tagashira,et al.  A hybrid Monte Carlo/fluid model of RF plasmas in a SiH/sub 4//H/sub 2/ mixture , 1991 .

[26]  M. Kushner Distribution of ion energies incident on electrodes in capacitively coupled rf discharges , 1985 .

[27]  M. Surendra,et al.  Particle simulations of radio-frequency glow discharges , 1991 .

[28]  M. Lieberman,et al.  Verification of frequency scaling laws for capacitive radio‐frequency discharges using two‐dimensional simulations* , 1993 .

[29]  M. Meyyappan,et al.  Modeling of electronegative radio-frequency discharges , 1991 .

[30]  Scott E. Parker,et al.  Multi-scale particle-in-cell plasma simulation , 1991 .

[31]  Bruce I. Cohen,et al.  Direct implicit large time-step particle simulation of plasmas , 1983 .

[32]  J. Boeuf,et al.  Numerical model of rf glow discharges. , 1987, Physical review. A, General physics.

[33]  Benjamin Alexandrovich,et al.  Electrical characteristics of parallel-plate RF discharges in argon , 1991 .

[34]  Godyak,et al.  Abnormally low electron energy and heating-mode transition in a low-pressure argon rf discharge at 13.56 MHz. , 1990, Physical review letters.

[35]  Y. Kaufman A Monte Carlo simulation of electron swarm parameters in He-CO mixtures , 1988 .

[36]  Mark J. Kushner,et al.  Monte‐Carlo simulation of electron properties in rf parallel plate capacitively coupled discharges , 1983 .

[37]  Graves,et al.  Self-consistent model of a direct-current glow discharge: Treatment of fast electrons. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[38]  M. Lieberman,et al.  A one‐dimensional collisional model for plasma‐immersion ion implantation , 1991 .

[39]  Sheath motion in a capacitively coupled radio frequency discharge , 1991 .

[40]  A. B. Langdon,et al.  Electron sub-cycling in particle simulation of plasma , 1982 .

[41]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .