Solar Trees: First Large‐Scale Demonstration of Fully Solution Coated, Semitransparent, Flexible Organic Photovoltaic Modules

The technology behind a large area array of flexible solar cells with a unique design and semitransparent blue appearance is presented. These modules are implemented in a solar tree installation at the German pavilion in the EXPO2015 in Milan/IT. The modules show power conversion efficiencies of 4.5% and are produced exclusively using standard printing techniques for large‐scale production.

[1]  Simon Roberts,et al.  Building Integrated Photovoltaics , 2005 .

[2]  André Moliton,et al.  Size effect on organic optoelectronics devices: Example of photovoltaic cell efficiency , 2008 .

[3]  K. S. Narayan,et al.  Area dependent efficiency of organic solar cells , 2008 .

[4]  R. Stepto Dispersity in polymer science (IUPAC Recommendations 2009) , 2009 .

[5]  D. Seferos,et al.  Size-dependent behavior of polymer solar cells measured under partial illumination , 2011 .

[6]  Wei Li,et al.  Electrochemical Considerations for Determining Absolute Frontier Orbital Energy Levels of Conjugated Polymers for Solar Cell Applications , 2011, Advanced materials.

[7]  Steven Abbott,et al.  Determination of the P3HT:PCBM solubility parameters via a binary solvent gradient method: Impact of solubility on the photovoltaic performance , 2012 .

[8]  Miao Xu,et al.  Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure , 2012, Nature Photonics.

[9]  Markus Hösel,et al.  Solar cells with one-day energy payback for the factories of the future , 2012 .

[10]  N. S. Sariciftci,et al.  Material solubility and molecular compatibility effects in the design of fullerene/polymer composites for organic bulk heterojunction solar cells , 2012 .

[11]  Fadong Yan,et al.  Semitransparent OPV modules pass environmental chamber test requirements , 2013 .

[12]  F. Krebs,et al.  Polymer and organic solar cells viewed as thin film technologies: What it will take for them to become a success outside academia , 2013 .

[13]  Yu-Shan Cheng,et al.  Fullerene Derivative‐Doped Zinc Oxide Nanofilm as the Cathode of Inverted Polymer Solar Cells with Low‐Bandgap Polymer (PTB7‐Th) for High Performance , 2013, Advanced materials.

[14]  Christoph J. Brabec,et al.  Determining the coating speed limitations for organic photovoltaic inks , 2013 .

[15]  Mikkel Jørgensen,et al.  25th Anniversary Article: Rise to Power – OPV‐Based Solar Parks , 2014, Advanced materials.

[16]  Jin Young Kim,et al.  Semi-crystalline photovoltaic polymers with efficiency exceeding 9% in a ∼300 nm thick conventional single-cell device , 2014 .

[17]  C. J. M. Emmott,et al.  Dynamic carbon mitigation analysis: the role of thin-film photovoltaics , 2014 .

[18]  Long Ye,et al.  Highly Efficient 2D-Conjugated Benzodithiophene-Based Photovoltaic Polymer with Linear Alkylthio Side Chain , 2014 .

[19]  Mikkel Jørgensen,et al.  Cost analysis of roll-to-roll fabricated ITO free single and tandem organic solar modules based on data from manufacture , 2014 .

[20]  Christoph J. Brabec,et al.  Large area slot-die coated organic solar cells on flexible substrates with non-halogenated solution formulations , 2014 .

[21]  Hans-Joachim Egelhaaf,et al.  The Effect of PCBM Dimerization on the Performance of Bulk Heterojunction Solar Cells , 2014 .

[22]  He Yan,et al.  Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells , 2014, Nature Communications.

[23]  Suren A. Gevorgyan,et al.  Scalable, ambient atmosphere roll-to-roll manufacture of encapsulated large area, flexible organic tandem solar cell modules , 2014 .

[24]  C. Jagadish,et al.  Effect of Nanocrystalline Domains in Photovoltaic Devices with Benzodithiophene-Based Donor–Acceptor Copolymers , 2014 .

[25]  Yongfang Li,et al.  High performance polymer solar cells with as-prepared zirconium acetylacetonate film as cathode buffer layer , 2014, Scientific Reports.

[26]  R. Po’,et al.  From lab to fab: how must the polymer solar cell materials design change? – an industrial perspective , 2014 .

[27]  Christoph J. Brabec,et al.  High precision processing of flexible P3HT/PCBM modules with geometric fill factor over 95% , 2014 .

[28]  Hongkyu Kang,et al.  Flexible polymer solar cell modules with patterned vanadium suboxide layers deposited by an electro-spray printing method , 2014 .

[29]  A. Heeger,et al.  Single‐Junction Organic Solar Cells Based on a Novel Wide‐Bandgap Polymer with Efficiency of 9.7% , 2015, Advanced materials.

[30]  Frank W. Fecher,et al.  Guidelines for Closing the Efficiency Gap between Hero Solar Cells and Roll‐To‐Roll Printed Modules , 2015 .

[31]  C. Brabec,et al.  Classification of additives for organic photovoltaic devices. , 2015, Chemphyschem : a European journal of chemical physics and physical chemistry.

[32]  A. Tournebize,et al.  The effect of polymer solubilizing side-chains on solar cell stability. , 2015, Physical chemistry chemical physics : PCCP.

[33]  Christoph J. Brabec,et al.  Patterning of organic photovoltaic modules by ultrafast laser , 2015 .

[34]  Jin Young Kim,et al.  Small‐Bandgap Polymer Solar Cells with Unprecedented Short‐Circuit Current Density and High Fill Factor , 2015, Advanced materials.