Incorporating NASA Spaceborne Radar Data into NOAA National Mosaic QPE System for Improved Precipitation Measurement: A Physically Based VPR Identification and Enhancement Method

AbstractThis study proposes an approach that identifies and corrects for the vertical profile of reflectivity (VPR) by using Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) measurements in the region of Arizona and southern California, where the ground-based Next Generation Weather Radar (NEXRAD) finds difficulties in making reliable estimations of surface precipitation amounts because of complex terrain and limited radar coverage. A VPR identification and enhancement (VPR-IE) method based on the modeling of the vertical variations of the equivalent reflectivity factor using a physically based parameterization is employed to obtain a representative VPR at S band from the TRMM PR measurement at Ku band. Then the representative VPR is convolved with ground radar beam sampling properties to compute apparent VPRs for enhancing NEXRAD quantitative precipitation estimation (QPE). The VPR-IE methodology is evaluated with several stratiform precipitation events during the cold season and is co...

[1]  Hervé Andrieu,et al.  Bollène-2002 Experiment: Radar Quantitative Precipitation Estimation in the Cévennes–Vivarais Region, France. , 2009 .

[2]  Urs Germann,et al.  Mesobeta Profiles to Extrapolate Radar Precipitation Measurements above the Alps to the Ground Level , 2002 .

[3]  Jian Zhang,et al.  Weather Radar Coverage over the Contiguous United States , 2002 .

[4]  Frédéric Fabry,et al.  Long-Term Radar Observations of the Melting Layer of Precipitation and Their Interpretation , 1995 .

[5]  Jordi Figueras i Ventura,et al.  The New French Operational Polarimetric Radar Rainfall Rate Product , 2013 .

[6]  A. R. Holt,et al.  A melting-layer model and its use in correcting for the bright band in single-polarization radar echoes , 1995 .

[7]  Y. Hong,et al.  Cross Validation of Spaceborne Radar and Ground Polarimetric Radar Aided by Polarimetric Echo Classification of Hydrometeor Types , 2011 .

[8]  J. M. Porrà,et al.  A general formulation for raindrop size distribution , 1994 .

[9]  David L. Toll,et al.  Statistical Evaluation of Combined Daily Gauge Observations and Rainfall Satellite Estimates over Continental South America , 2009 .

[10]  J. McGinley,et al.  Improving QPE and Very Short Term QPF: An Initiative for a Community-Wide Integrated Approach , 2007 .

[11]  Yang Hong,et al.  Hydrologic evaluation of Multisatellite Precipitation Analysis standard precipitation products in basins beyond its inclined latitude band: A case study in Laohahe basin, China , 2010 .

[12]  H. Andrieu,et al.  Identification of Vertical Profiles of Reflectivity from Volume Scan Radar Data , 1999 .

[13]  P. Tabary,et al.  The New French Operational Radar Rainfall Product. Part I: Methodology , 2007 .

[14]  Isztar Zawadzki,et al.  Error Statistics of VPR Corrections in Stratiform Precipitation , 2005 .

[15]  B. Boudevillain,et al.  A Physically Based Identification of Vertical Profiles of Reflectivity from Volume Scan Radar Data , 2013 .

[16]  K. Okamoto,et al.  Rain profiling algorithm for the TRMM precipitation radar , 1997, IGARSS'97. 1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing - A Scientific Vision for Sustainable Development.

[17]  Wim Klaassen,et al.  Radar Observations and Simulation of the Melting Layer of Precipitation , 1988 .

[18]  Timothy J. Smyth,et al.  Radar estimates of rainfall rates at the ground in bright band and non‐bright band events , 1998 .

[19]  Yang Hong,et al.  Empirical conversion of the vertical profile of reflectivity from Ku‐band to S‐band frequency , 2013 .

[20]  M. Kitchen,et al.  Towards improved radar estimates of surface precipitation rate at long range , 1997 .

[21]  Sergey Y. Matrosov,et al.  A Polarimetric Radar Approach to Identify Rain, Melting-Layer, and Snow Regions for Applying Corrections to Vertical Profiles of Reflectivity , 2007 .

[22]  Travis M. Smith,et al.  An Automated Technique to Quality Control Radar Reflectivity Data , 2007 .

[23]  Jian Zhang,et al.  Constructing Three-Dimensional Multiple-Radar Reflectivity Mosaics: Examples of Convective Storms and Stratiform Rain Echoes , 2005 .

[24]  H. Andrieu,et al.  Identification of vertical profiles of radar reflectivity for hydrological applications using an inverse method. II: Sensitivity analysis and case study , 1995 .

[25]  Jian Zhang,et al.  National mosaic and multi-sensor QPE (NMQ) system description, results, and future plans , 2011 .

[26]  Silas C. Michaelides,et al.  Range adjustment for ground-based radar, derived with the spaceborne TRMM precipitation radar , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[27]  G. Galli,et al.  Three Methods to Determine Profiles of Reflectivity from Volumetric Radar Data to Correct Precipitation Estimates , 2000 .

[28]  B. Boudevillain,et al.  Assessment of Vertically Integrated Liquid (VIL) Water Content Radar Measurement , 2003 .

[29]  Dong-Jun Seo,et al.  An Intercomparison Study of NEXRAD Precipitation Estimates , 1996 .

[30]  Toshio Iguchi,et al.  Uncertainties in the Rain Profiling Algorithm for the TRMM Precipitation Radar(1. Precipitation Radar (PR), Precipitation Measurements from Space) , 2009 .

[31]  Robert L. Lee,et al.  The Application of RadarGauge Comparisons to Operational Precipitation Profile Corrections , 1995 .

[32]  Isztar Zawadzki,et al.  Modeling of the melting layer. Part I : Dynamics and microphysics , 1999 .

[33]  Yang Hong,et al.  Statistical and Physical Analysis of the Vertical Structure of Precipitation in the Mountainous West Region of the United States Using 11+ Years of Spaceborne Observations from TRMM Precipitation Radar , 2013 .

[34]  Hervé Andrieu,et al.  Identification of Vertical Profiles of Reflectivity for Correction of Volumetric Radar Data Using Rainfall Classification , 2010 .

[35]  Jian Zhang,et al.  A Real-Time Algorithm for the Correction of Brightband Effects in Radar-Derived QPE , 2010 .

[36]  M. Kitchen,et al.  Real-time correction of weather radar data for the effects of bright band, range and orographic growth in widespread precipitation , 1994 .

[37]  Robert F. Adler,et al.  On the Tropical Rainfall Measuring Mission (TRMM) , 1996 .

[38]  W. D. Sellers,et al.  Arizona climate, 1931-1972 , 1975 .

[39]  Hervé Andrieu,et al.  Identification of Vertical Profiles of Radar Reflectivity for Hydrological Applications Using an Inverse Method. Part II: Formulation. , 1995 .

[40]  R. E. López,et al.  Diurnal Cloud-to-Ground Lightning Patterns in Arizona during the Southwest Monsoon , 1994 .

[41]  Georges-Marie Saulnier,et al.  Hydrologic Visibility of Weather Radar Systems Operating in Mountainous Regions: Case Study for the Ardèche Catchment (France) , 2002 .

[42]  Bong-Chul Seo,et al.  Statistical model of the range-dependent error in radar-rainfall estimates due to the vertical profile of reflectivity , 2011 .

[43]  W. Krajewski,et al.  Large-Sample Evaluation of Two Methods to Correct Range-Dependent Error for WSR-88D Rainfall Estimates , 2001 .