A lower bound for integer greatest common divisor computations

It is proved that no finite computation tree with operations { +, -, *, /, mod, < } can decide whether the greatest common divisor (gcd) of <italic>a</italic> and <italic>b</italic> is one, for all pairs of integers <italic>a</italic> and <italic>b</italic>. This settles a problem posed by Gro¨tschel et al. Moreover, if the constants explicitly involved in any operation performed in the tree are restricted to be “0” and “1” (and any other constant must be computed), then we prove an &OHgr;(log log <italic>n</italic>) lower bound on the depth of any computation tree with operations { +, -, *, /, mod, < } that decides whether the gcd of <italic>a</italic> and <italic>b</italic> is one, for all pairs of <italic>n</italic>-bit integers <italic>a</italic> and <italic>b</italic>. A novel technique for handling the truncation operation is implicit in the proof of this lower bound. In a companion paper, other lower bounds for a large class of problems are proved using a similar technique.

[1]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[2]  George E. Collins The Computing Time of the Euclidean Algorithm , 1974, SIAM J. Comput..

[3]  Larry J. Stockmeyer,et al.  A characterization of the power of vector machines , 1974, STOC '74.

[4]  Donald Ervin Knuth,et al.  The Art of Computer Programming, 2nd Ed. (Addison-Wesley Series in Computer Science and Information , 1978 .

[5]  Adi Shamir,et al.  Factoring Numbers in O(log n) Arithmetic Steps , 1979, Inf. Process. Lett..

[6]  Arnold Schönhage,et al.  On the Power of Random Access Machines , 1979, ICALP.

[7]  Janos Simon Division in Idealized Unit Cost RAMS , 1981, J. Comput. Syst. Sci..

[8]  Volker Strassen,et al.  The computational complexity of continued fractions , 1981, SYMSAC '81.

[9]  Giancarlo Mauri,et al.  A characterization of the class of functions computable in polynomial time on Random Access Machines , 1981, STOC '81.

[10]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[11]  J. Michael Steele,et al.  Lower Bounds for Algebraic Decision Trees , 1982, J. Algorithms.

[12]  Volker Strassen,et al.  The Computational Complexity of Continued Fractions , 1983, SIAM J. Comput..

[13]  Michael Ben-Or,et al.  Lower bounds for algebraic computation trees , 1983, STOC.

[14]  Oscar H. Ibarra,et al.  On the Control Power of Integer Division , 1983, Theor. Comput. Sci..

[15]  Michael J. O'Donnell,et al.  Lower Bounds for Sorting with Realistic Instruction Sets , 1985, IEEE Transactions on Computers.

[16]  Shlomo Moran,et al.  Applications of Ramsey's theorem to decision tree complexity , 1985, JACM.

[17]  Dittert,et al.  Correction to "Lower Bounds for Sorting with Realistic Instruction Sets" , 1986 .

[18]  Friedhelm Meyer auf der Heide,et al.  On the Limits of Computations with the Floor Function , 1988, Inf. Comput..

[19]  Friedhelm Meyer auf der Heide,et al.  On Computations with Integer Division , 1988, RAIRO Theor. Informatics Appl..

[20]  Baruch Schieber,et al.  Lower Bounds for Computations with the Floor Operation , 1989, SIAM J. Comput..

[21]  Friedhelm Meyer auf der Heide,et al.  On Computations with Integer Division , 1988, RAIRO Theor. Informatics Appl..

[22]  J. G. Pierce,et al.  Geometric Algorithms and Combinatorial Optimization , 2016 .

[23]  Baruch Schieber,et al.  The complexity of approximating the square root , 1989, 30th Annual Symposium on Foundations of Computer Science.