Eigenvalue-based algorithm and analysis for nonconvex QCQP with one constraint
暂无分享,去创建一个
[1] Jos F. Sturm,et al. A Matlab toolbox for optimization over symmetric cones , 1999 .
[2] Y. Moon,et al. Finding a positive definite linear combination of two Hermitian matrices , 1983 .
[3] Henry Wolkowicz,et al. The generalized trust region subproblem , 2014, Comput. Optim. Appl..
[4] Nicholas I. M. Gould,et al. Solving the Trust-Region Subproblem using the Lanczos Method , 1999, SIAM J. Optim..
[5] Arkadi Nemirovski,et al. Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.
[6] Aaas News,et al. Book Reviews , 1893, Buffalo Medical and Surgical Journal.
[7] Henry Wolkowicz,et al. The trust region subproblem and semidefinite programming , 2004, Optim. Methods Softw..
[8] Kim-Chuan Toh,et al. SDPT3 -- A Matlab Software Package for Semidefinite Programming , 1996 .
[9] Chao Yang,et al. ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.
[10] G. Fehmers,et al. An algorithme for quadratic optimization with one quadratic constraint and bounds on the variables , 1998 .
[11] J. J. Moré. Generalizations of the trust region problem , 1993 .
[12] Stephen J. Wright,et al. Numerical Optimization , 2018, Fundamental Statistical Inference.
[13] Nicholas I. M. Gould,et al. Trust Region Methods , 2000, MOS-SIAM Series on Optimization.
[14] Akiko Takeda,et al. Solving the Trust-Region Subproblem By a Generalized Eigenvalue Problem , 2017, SIAM J. Optim..
[15] Leiba Rodman,et al. Canonical Forms for Hermitian Matrix Pairs under Strict Equivalence and Congruence , 2005, SIAM Rev..
[16] Akiko Takeda,et al. Solving Generalized CDT Problems via Two-Parameter Eigenvalues , 2016, SIAM J. Optim..
[17] R. C. Thompson,et al. Pencils of complex and real symmetric and skew matrices , 1991 .
[18] R. C. Thompson,et al. The characteristic polynomial of a principal subpencil of a Hermitian matrix pencil , 1976 .
[19] Danny C. Sorensen,et al. Minimization of a Large-Scale Quadratic FunctionSubject to a Spherical Constraint , 1997, SIAM J. Optim..
[20] Akiko Takeda,et al. Global Optimization Methods for Extended Fisher Discriminant Analysis , 2014, AISTATS.
[21] Tamás Terlaky,et al. A Survey of the S-Lemma , 2007, SIAM Rev..
[22] Franz Rendl,et al. A semidefinite framework for trust region subproblems with applications to large scale minimization , 1997, Math. Program..
[23] Nicholas J. Higham,et al. An Improved Arc Algorithm for Detecting Definite Hermitian Pairs , 2009, SIAM J. Matrix Anal. Appl..
[24] Henry Wolkowicz,et al. Local nonglobal minima for solving large-scale extended trust-region subproblems , 2015, Comput. Optim. Appl..
[25] Duan Li,et al. SOCP reformulation for the generalized trust region subproblem via a canonical form of two symmetric matrices , 2016, Math. Program..
[26] Stephen A. Vavasis,et al. Quadratic Programming is in NP , 1990, Inf. Process. Lett..
[27] Yong Xia,et al. Duality and solutions for quadratic programming over single non-homogeneous quadratic constraint , 2012, J. Glob. Optim..
[28] Danny C. Sorensen,et al. A New Matrix-Free Algorithm for the Large-Scale Trust-Region Subproblem , 2000, SIAM J. Optim..
[29] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[30] W. Gander,et al. A constrained eigenvalue problem , 1988 .
[31] D. Sorensen,et al. 4. The Implicitly Restarted Arnoldi Method , 1998 .
[32] Ruey-Lin Sheu,et al. A Revisit to Quadratic Programming with One Inequality Quadratic Constraint via Matrix Pencil , 2013, 1312.1400.
[33] Jack Dongarra,et al. Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.
[34] Sartaj Sahni,et al. Computationally Related Problems , 1974, SIAM J. Comput..
[35] Danny C. Sorensen,et al. Algorithm 873: LSTRS: MATLAB software for large-scale trust-region subproblems and regularization , 2008, TOMS.
[36] Jorge J. Moré,et al. Computing a Trust Region Step , 1983 .
[37] V. Mehrmann,et al. Möbius transformations of matrix polynomials , 2015 .
[38] James Demmel,et al. The generalized Schur decomposition of an arbitrary pencil A–λB—robust software with error bounds and applications. Part I: theory and algorithms , 1993, TOMS.
[39] Gene H. Golub,et al. Matrix computations , 1983 .