Water-mediated structuring of bone apatite.

[1]  T. Azaïs,et al.  Collagen Osteoid-Like Model Allows Kinetic Gene Expression Studies of Non-Collagenous Proteins in Relation with Mineral Development to Understand Bone Biomineralization , 2013, PloS one.

[2]  Y. Leng,et al.  Hydrothermal growth of biomimetic carbonated apatite nanoparticles with tunable size, morphology and ultrastructure , 2013 .

[3]  Yan Wang,et al.  The predominant role of collagen in the nucleation, growth, structure and orientation of bone apatite. , 2012, Nature materials.

[4]  M. Corno,et al.  Coordination chemistry of Ca sites at the surface of nanosized hydroxyapatite: interaction with H2O and CO , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[5]  F. Mauri,et al.  Investigation of the interface in silica-encapsulated liposomes by combining solid state NMR and first principles calculations. , 2011, Journal of the American Chemical Society.

[6]  R. Rai,et al.  Dehydration-Induced Structural Changes in the Collagen–Hydroxyapatite Interface in Bone by High-Resolution Solid-State NMR Spectroscopy , 2011 .

[7]  K. Schmidt-Rohr,et al.  Strongly bound citrate stabilizes the apatite nanocrystals in bone , 2010, Proceedings of the National Academy of Sciences.

[8]  C. Rey,et al.  Amorphous calcium phosphates: synthesis, properties and uses in biomaterials. , 2010, Acta biomaterialia.

[9]  M. Willinger,et al.  In Vivo Inspired Conditions to Synthesize Biomimetic Hydroxyapatite , 2010 .

[10]  S. Weiner,et al.  Mapping amorphous calcium phosphate transformation into crystalline mineral from the cell to the bone in zebrafish fin rays , 2010, Proceedings of the National Academy of Sciences.

[11]  S. Dorozhkin Nanodimensional and Nanocrystalline Apatites and Other Calcium Orthophosphates in Biomedical Engineering, Biology and Medicine , 2009, Materials.

[12]  Shing‐Jong Huang,et al.  Structural Model of Rat Dentin Revisited , 2009 .

[13]  M. Glimcher,et al.  Bone mineral: update on chemical composition and structure , 2009, Osteoporosis International.

[14]  S. Maltsev,et al.  The Organic−Mineral Interface in Bone Is Predominantly Polysaccharide , 2007 .

[15]  S. Maltsev,et al.  A solid-state NMR comparison of the mineral structure in bone from diseased joints in the horse , 2007 .

[16]  F. Mauri,et al.  First principles NMR calculations of phenylphosphinic acid C6H5HPO(OH): assignments, orientation of tensors by local field experiments and effect of molecular motion. , 2007, Journal of magnetic resonance.

[17]  T. Umegaki,et al.  Thermal crystallisation of amorphous calcium phosphate to α-tricalcium phosphate , 2007 .

[18]  C. Rey,et al.  Physico-chemical properties of nanocrystalline apatites: Implications for biominerals and biomaterials , 2007 .

[19]  P. Midgley,et al.  Surface structure, hydration, and cationic sites of nanohydroxyapatite: UHR-TEM, IR, and microgravimetric studies , 2007 .

[20]  Wolfgang Wagermaier,et al.  Cooperative deformation of mineral and collagen in bone at the nanoscale , 2006, Proceedings of the National Academy of Sciences.

[21]  Martin Chaplin,et al.  Do we underestimate the importance of water in cell biology? , 2006, Nature Reviews Molecular Cell Biology.

[22]  M. Epple,et al.  A solid‐state NMR investigation of the structure of nanocrystalline hydroxyapatite , 2006, Magnetic resonance in chemistry : MRC.

[23]  S. Maltsev,et al.  Progress of Structural Elucidation of Amorphous Calcium Phosphate(ACP)and Hydroxyapatite (HAp): Disorder and Surfaces as Seen by Solid State NMR , 2006 .

[24]  M. Antonietti,et al.  Synthesis of stable aragonite superstructures by a biomimetic crystallization pathway. , 2005, Angewandte Chemie.

[25]  M. Antonietti,et al.  Amorphous layer around aragonite platelets in nacre. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Jacqueline A. Cutroni,et al.  Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture , 2005, Nature materials.

[27]  M. Morris,et al.  Highly Ordered Interstitial Water Observed in Bone by Nuclear Magnetic Resonance , 2004, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[28]  S. Hayakawa,et al.  Selective protein adsorption and blood compatibility of hydroxy-carbonate apatites. , 2004, Journal of biomedical materials research. Part A.

[29]  Arthur Veis,et al.  Nucleation of apatite crystals in vitro by self-assembled dentin matrix protein 1 , 2003, Nature materials.

[30]  Philippe Gillet,et al.  Nanobacteria-like calcite single crystals at the surface of the Tataouine meteorite , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[31]  J. Ackerman,et al.  Detection of Hydroxyl Ions in Bone Mineral by Solid-State NMR Spectroscopy , 2003, Science.

[32]  W. Landis,et al.  Organization of apatite crystals in human woven bone. , 2003, Bone.

[33]  J. Ackerman,et al.  Nuclear Magnetic Resonance Spin‐Spin Relaxation of the Crystals of Bone, Dental Enamel, and Synthetic Hydroxyapatites , 2002, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[34]  J. Tanaka,et al.  Hydroxyapatite formation on cellulose cloth induced by citric acid , 2000, Journal of materials science. Materials in medicine.

[35]  S. Milonjić,et al.  The point of zero charge and sorption of cadmium (II) and strontium (II) ions on synthetic hydroxyapatite , 2000 .

[36]  S. Weiner,et al.  Lamellar bone: structure-function relations. , 1999, Journal of structural biology.

[37]  A. J. Vega,et al.  Determination of the Quadrupole Coupling Constant of the Invisible Aluminum Spins in Zeolite HY with 1H/27Al TRAPDOR NMR , 1995 .

[38]  S. Weiner,et al.  Disaggregation of bone into crystals , 1986, Calcified Tissue International.

[39]  P. Frasca,et al.  Mineral and Collagen Fiber Orientation in Human Secondary Osteons , 1978, Journal of dental research.

[40]  M. Glimcher,et al.  Electron microscopic observations of bone tissue prepared anhydrously in organic solvents. , 1977, Journal of ultrastructure research.

[41]  W. Neuman,et al.  Further studies on the nature of fluid compartmentalization in chick calvaria , 1975, Calcified Tissue Research.

[42]  L. Onsager THE EFFECTS OF SHAPE ON THE INTERACTION OF COLLOIDAL PARTICLES , 1949 .

[43]  Nita Sahai Medical mineralogy and geochemistry , 2012 .

[44]  J. Pasteris,et al.  Structural Water in Carbonated Hydroxylapatite and Fluorapatite: Confirmation by Solid State 2H NMR , 2011, Calcified Tissue International.

[45]  E. Beniash Biominerals--hierarchical nanocomposites: the example of bone. , 2011, Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology.

[46]  M. Morris,et al.  Time-Resolved Dehydration-Induced Structural Changes in An Intact Bovine Cortical Bone Revealed by Solid-State NMR Spectroscopy , 2010 .

[47]  J. Nyman,et al.  Measurements of mobile and bound water by nuclear magnetic resonance correlate with mechanical properties of bone. , 2008, Bone.

[48]  F. Babonneau,et al.  Solid State NMR Characterization of Nano-crystalline hydroxy-carbonate Apatite Using 1H-31P-13C Triple Resonance Experiments , 2006 .

[49]  O. Antzutkin,et al.  New Techniques in Solid-State NMR , 2005 .

[50]  S. Cowin Bone poroelasticity. , 1999, Journal of biomechanics.

[51]  A. Boskey,et al.  Biomineralization: conflicts, challenges, and opportunities. , 1998, Journal of cellular biochemistry. Supplement.

[52]  A Leith,et al.  Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high-voltage electron microscopic tomography and graphic image reconstruction. , 1993, Journal of structural biology.

[53]  M. Glimcher,et al.  Solid state carbon-13 and proton NMR studies of carbonate-containing calcium phosphates and enamel , 1990 .