Ginsenoside Rd attenuates beta-amyloid-induced tau phosphorylation by altering the functional balance of glycogen synthase kinase 3beta and protein phosphatase 2A

[1]  K. Qin,et al.  Ginsennoside Rd Attenuates Cognitive Dysfunction in a Rat Model of Alzheimer’s Disease , 2012, Neurochemical Research.

[2]  X. Liu,et al.  Ginsenoside‐Rd improves outcome of acute ischaemic stroke – a randomized, double‐blind, placebo‐controlled, multicenter trial , 2012, European journal of neurology.

[3]  Yan-Hong Wang,et al.  Ginsenoside Rd attenuates the inflammatory response via modulating p38 and JNK signaling pathways in rats with TNBS-induced relapsing colitis. , 2012, International immunopharmacology.

[4]  K. Qin,et al.  Protective effects of ginsenoside Rd against okadaic acid-induced neurotoxicity in vivo and in vitro. , 2011, Journal of ethnopharmacology.

[5]  Qianzi Yang,et al.  Ginsenoside Rd attenuates redox imbalance and improves stroke outcome after focal cerebral ischemia in aged mice , 2011, Neuropharmacology.

[6]  F. Couch,et al.  Mutant K-Ras increases GSK-3β gene expression via an ETS-p300 transcriptional complex in pancreatic cancer , 2011, Oncogene.

[7]  L. Xiong,et al.  Ginsenoside Rd in Experimental Stroke: Superior Neuroprotective Efficacy with a Wide Therapeutic Window , 2011, Neurotherapeutics.

[8]  G. Zhao,et al.  Ginsenoside Rd attenuates mitochondrial dysfunction and sequential apoptosis after transient focal ischemia , 2011, Neuroscience.

[9]  L. Xiong,et al.  Ginsenoside Rd attenuates early oxidative damage and sequential inflammatory response after transient focal ischemia in rats , 2011, Neurochemistry International.

[10]  G. Saxena,et al.  Okadaic acid (ICV) induced memory impairment in rats: A suitable experimental model to test anti-dementia activity , 2010, Brain Research.

[11]  Jianhua Shi,et al.  Reduced O-GlcNAcylation links lower brain glucose metabolism and tau pathology in Alzheimer's disease. , 2009, Brain : a journal of neurology.

[12]  R. Ye,et al.  Neuroprotective effects of ginsenoside Rd against oxygen-glucose deprivation in cultured hippocampal neurons , 2009, Neuroscience Research.

[13]  H. Paudel,et al.  Familial FTDP-17 Missense Mutations Inhibit Microtubule Assembly-promoting Activity of Tau by Increasing Phosphorylation at Ser202 in Vitro* , 2009, Journal of Biological Chemistry.

[14]  X. Liu,et al.  Efficacy and safety of ginsenoside‐Rd for acute ischaemic stroke: a randomized, double‐blind, placebo‐controlled, phase II multicenter trial , 2009, European journal of neurology.

[15]  I. Grundke‐Iqbal,et al.  Mechanisms of tau-induced neurodegeneration , 2009, Acta Neuropathologica.

[16]  Xiangwei Kong,et al.  Protective effects of ginsenoside Rd on PC12 cells against hydrogen peroxide. , 2008, Biological & pharmaceutical bulletin.

[17]  H. Tanila,et al.  Tau hyperphosphorylation correlates with reduced methylation of protein phosphatase 2A , 2008, Neurobiology of Disease.

[18]  Fei Liu,et al.  Microtubule-associated protein tau in development, degeneration and protection of neurons , 2008, Progress in Neurobiology.

[19]  Kit-Yi Leung,et al.  Novel Phosphorylation Sites in Tau from Alzheimer Brain Support a Role for Casein Kinase 1 in Disease Pathogenesis* , 2007, Journal of Biological Chemistry.

[20]  Michael P. Mazanetz,et al.  Untangling tau hyperphosphorylation in drug design for neurodegenerative diseases , 2007, Nature Reviews Drug Discovery.

[21]  Bin Li,et al.  Disruption of microtubule network by Alzheimer abnormally hyperphosphorylated tau , 2007, Acta Neuropathologica.

[22]  F. Plattner,et al.  The Roles of Cyclin-dependent Kinase 5 and Glycogen Synthase Kinase 3 in Tau Hyperphosphorylation* , 2006, Journal of Biological Chemistry.

[23]  C. Gong,et al.  Hyperphosphorylation of tau and protein phosphatases in Alzheimer disease. , 2006, Panminerva medica.

[24]  Y. Surh,et al.  β-Amyloid-induced apoptosis is associated with cyclooxygenase-2 up-regulation via the mitogen-activated protein kinase–NF-κB signaling pathway , 2005 .

[25]  F. LaFerla,et al.  Alzheimer's disease: Aβ, tau and synaptic dysfunction , 2005 .

[26]  S. Barger,et al.  Secreted β-amyloid precursor protein activates microglia via JNK and p38-MAPK , 2005, Neurobiology of Aging.

[27]  S. Speciale,et al.  Altered Expression Levels of the Protein Phosphatase 2A ABαC Enzyme Are Associated with Alzheimer Disease Pathology , 2004, Journal of neuropathology and experimental neurology.

[28]  T. Fath,et al.  Tau-Mediated Cytotoxicity in a Pseudohyperphosphorylation Model of Alzheimer's Disease , 2002, The Journal of Neuroscience.

[29]  D. Geschwind,et al.  Human Wild-Type Tau Interacts with wingless Pathway Components and Produces Neurofibrillary Pathology in Drosophila , 2002, Neuron.

[30]  W. Markesbery,et al.  Alzheimer's neurofibrillary pathology and the spectrum of cognitive function: Findings from the Nun Study , 2002, Annals of neurology.

[31]  T. Town,et al.  Soluble β-amyloid peptides mediate vasoactivity via activation of a pro-inflammatory pathway , 2000, Neurobiology of Aging.

[32]  W. Blackstock,et al.  Phosphorylation Sites on Tau Identified by Nanoelectrospray Mass Spectrometry , 2000, Journal of neurochemistry.

[33]  H. Braak,et al.  Distribution of Active Glycogen Synthase Kinase 3β (GSK-3β) in Brains Staged for Alzheimer Disease Neurofibrillary Changes , 1999 .

[34]  S. Lovestone,et al.  The phosphorylation of tau: a critical stage in neurodevelopment and neurodegenerative processes. , 1997, Neuroscience.

[35]  K. Imahori,et al.  Physiology and pathology of tau protein kinases in relation to Alzheimer's disease. , 1997, Journal of biochemistry.

[36]  E. Braak,et al.  Distribution, Levels, and Activity of Glycogen Synthase Kinase‐3 in the Alzheimer Disease Brain , 1997, Journal of neuropathology and experimental neurology.

[37]  K. Titani,et al.  Proline-directed and Non-proline-directed Phosphorylation of PHF-tau (*) , 1995, The Journal of Biological Chemistry.

[38]  J. Woodgett,et al.  Mitogen inactivation of glycogen synthase kinase-3 beta in intact cells via serine 9 phosphorylation. , 1994, The Biochemical journal.

[39]  J. Woodgett,et al.  Modulation of the glycogen synthase kinase‐3 family by tyrosine phosphorylation. , 1993, The EMBO journal.

[40]  Bradley T. Hyman,et al.  Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer's disease , 1992, Neurology.

[41]  Geng Li,et al.  Increased Phosphorylation of Tau and Synaptic Protein Loss in the Aged Transgenic Mice Expressing Familiar Alzheimer’s Disease-Linked Presenilin 1 Mutation , 2011, Neurochemical Research.

[42]  R. Ye,et al.  Ginsenoside Rd Protects Neurons Against Glutamate-Induced Excitotoxicity by Inhibiting Ca2+ Influx , 2011, Cellular and Molecular Neurobiology.

[43]  Jianhua Shi,et al.  PP2A regulates tau phosphorylation directly and also indirectly via activating GSK-3beta. , 2010, Journal of Alzheimer's disease : JAD.

[44]  Frank M LaFerla,et al.  Alzheimer's disease: Abeta, tau and synaptic dysfunction. , 2005, Trends in molecular medicine.

[45]  S. Barger,et al.  Secreted beta-amyloid precursor protein activates microglia via JNK and p38-MAPK. , 2005, Neurobiology of aging.

[46]  H. Braak,et al.  Distribution of active glycogen synthase kinase 3beta (GSK-3beta) in brains staged for Alzheimer disease neurofibrillary changes. , 1999, Journal of neuropathology and experimental neurology.