On Zero-Sum Spanning Trees and Zero-Sum Connectivity

We consider $2$-colourings $f : E(G) \rightarrow \{ -1 ,1 \}$ of the edges of a graph $G$ with colours $-1$ and $1$ in $\mathbb{Z}$. A subgraph $H$ of $G$ is said to be a zero-sum subgraph of $G$ under $f$ if $f(H) := \sum_{e\in E(H)} f(e) =0$. We study the following type of questions, in several cases obtaining best possible results: Under which conditions on $|f(G)|$ can we guarantee the existence of a zero-sum spanning tree of $G$? The types of $G$ we consider are complete graphs, $K_3$-free graphs, $d$-trees, and maximal planar graphs. We also answer the question of when any such colouring contains a zero-sum spanning path or a zero-sum spanning tree of diameter at most $3$, showing in passing that the diameter-$3$ condition is best possible. Finally, we give, for $G = K_n$, a sharp bound on $|f(K_n)|$ by which an interesting zero-sum connectivity property is forced, namely that any two vertices are joined by a zero-sum path of length at most $4$. One feature of this paper is the proof of an Interpolation Lemma leading to a Master Theorem from which many of the above results follow and which can be of independent interest.

[1]  Frank Harary,et al.  Graph Theory , 2016 .

[2]  D. R. Lick,et al.  k-Degenerate Graphs , 1970, Canadian Journal of Mathematics.

[3]  Donald J. ROSE,et al.  On simple characterizations of k-trees , 1974, Discret. Math..

[4]  Frank Harary,et al.  The Diameter of a Graph and Its Complement , 1985 .

[5]  Paul D. Seymour,et al.  A simpler proof and a generalization of the zero-trees theorem , 1991, J. Comb. Theory, Ser. A.

[6]  Zoltán Füredi,et al.  On zero-trees , 1992, J. Graph Theory.

[7]  James G. Oxley,et al.  Matroid theory , 1992 .

[8]  F. Harary,et al.  Spanning subgraphs of a hypercube IV: Rooted trees , 1993 .

[9]  Yair Caro A Complete Characterization of the Zero-Sum (mod 2) Ramsey Numbers , 1994, J. Comb. Theory, Ser. A.

[10]  Yair Caro,et al.  Zero-sum problems - A survey , 1996, Discret. Math..

[11]  Peter Mihók,et al.  A note on maximal $k$-degenerate graphs , 1997 .

[12]  Raphael Yuster,et al.  Packing Graphs: The packing problem solved , 1996, Electron. J. Comb..

[13]  Raphael Yuster,et al.  The characterization of zero-sum (mod 2) bipartite Ramsey numbers , 1998, J. Graph Theory.

[14]  Raphael Yuster,et al.  The uniformity space of hypergraphs and its applications , 1999, Discret. Math..

[15]  Noga Alon,et al.  Every H -decomposition of K n has a Nearly Resolvable Alternative. , 2000 .

[16]  András Gyárfás,et al.  Large Monochromatic Components in Edge Colorings of Graphs: A Survey , 2011 .

[17]  Hong Liu,et al.  On the Turán Number of Forests , 2012, Electron. J. Comb..

[18]  Richard M. Wilson,et al.  Diagonal forms of incidence matrices associated with tt-uniform hypergraphs , 2014, Eur. J. Comb..

[19]  Raphael Yuster,et al.  On Zero-Sum and Almost Zero-Sum Subgraphs Over $${\mathbb {Z}}$$Z , 2015, Graphs Comb..

[20]  D. Kuhn,et al.  Resolution of the Oberwolfach problem , 2018, Journal of the European Mathematical Society.

[21]  Yair Caro,et al.  Zero-sum subsequences in bounded-sum {-1, 1}-sequences , 2016, J. Comb. Theory, Ser. A.

[22]  Yair Caro,et al.  Zero-Sum Km Over Z and the Story of K4 , 2019, Graphs Comb..

[23]  J. Lauri,et al.  On Small Balanceable, Strongly-Balanceable and Omnitonal Graphs , 2019, Discuss. Math. Graph Theory.

[24]  Teeradej Kittipassorn,et al.  On the existence of zero-sum perfect matchings of complete graphs , 2020, Ars Math. Contemp..

[25]  Y. Caro,et al.  Graphs isomorphisms under edge-replacements and the family of amoebas , 2020, 2007.11769.

[26]  J. Lauri,et al.  A note on totally-omnitonal graphs , 2019, Bull. ICA.

[27]  Jian Wang,et al.  The formula for Turán number of spanning linear forests , 2018, Discret. Math..

[28]  Dieter Rautenbach,et al.  Low Weight Perfect Matchings , 2020, Electron. J. Comb..

[29]  Dieter Rautenbach,et al.  Efficiently finding low-sum copies of spanning forests in zero-sum complete graphs via conditional expectation , 2021 .

[30]  Dieter Rautenbach,et al.  Unbalanced spanning subgraphs in edge labeled complete graphs , 2021 .

[31]  Yair Caro,et al.  Unavoidable chromatic patterns in 2‐colorings of the complete graph , 2018, J. Graph Theory.

[32]  A proof of Ringel’s conjecture , 2020, Geometric and Functional Analysis.

[33]  Yair Caro,et al.  Recursive constructions of amoebas , 2021, Procedia Computer Science.

[34]  Dieter Rautenbach,et al.  Zero-sum copies of spanning forests in zero-sum complete graphs , 2021 .

[35]  Peter Keevash,et al.  The generalised Oberwolfach problem , 2020, J. Comb. Theory, Ser. B.

[36]  Dieter Rautenbach,et al.  Almost color-balanced perfect matchings in color-balanced complete graphs , 2021, Discret. Math..