Photothermal nano-cavities for ultra-sensitive chem-bio detection

Nano-cavity photothermal spectroscopy is a novel technique for ultra-sensitive chem-bio detection. We illustrate that through simultaneous localization of optical and thermal interactions in a planar nano-cavity, detection sensitivity can be improved by > 104 compared to state-of-the-art. Key to nano-cavity photothermal sensing is the use of novel infraredtransparent chalcogenide glasses for resonant cavity fabrication, as these glasses feature a photothermal figure-of-merit over two orders of magnitude higher than conventional materials. We demonstrate planar optical resonant cavity devices in these glasses with record cavity quality factors up to 5 × 105, leading to high photothermal detection sensitivity.

[1]  Kristen L. Helton,et al.  Microfluidic Overview of Global Health Issues Microfluidic Diagnostic Technologies for Global Public Health , 2006 .

[2]  Z Rong,et al.  Cavity-enhanced photothermal spectroscopy: dynamics, sensitivity, and spatial resolution. , 1992, Applied optics.

[3]  C C Davis,et al.  Phase fluctuation optical heterodyne spectroscopy of gases. , 1981, Applied optics.

[4]  J Lucas,et al.  Metabolic imaging of tissues by infrared fiber-optic spectroscopy: an efficient tool for medical diagnosis. , 2004, Journal of biomedical optics.

[5]  Kathleen Richardson,et al.  Demonstration of chalcogenide glass racetrack microresonators. , 2008, Optics letters.

[6]  S. Arnold,et al.  Whispering gallery mode bio-sensor for label-free detection of single molecules: thermo-optic vs. reactive mechanism. , 2010, Optics express.

[7]  Joseph Maria Kumar Irudayaraj,et al.  Detection and fingerprinting of pathogens : Mid-IR biosensor using amorphous chalcogenide films , 2008 .

[8]  G.E. Moore,et al.  Cramming More Components Onto Integrated Circuits , 1998, Proceedings of the IEEE.

[9]  Kathleen Richardson,et al.  Role of S∕Se ratio in chemical bonding of As–S–Se glasses investigated by Raman, x-ray photoelectron, and extended x-ray absorption fine structure spectroscopies , 2005 .

[10]  Juejun Hu,et al.  Optical trapping of nanoparticles in resonant cavities: optical tweezers with single particle selectivity , 2009 .

[11]  J E Heebner,et al.  Sensitive disk resonator photonic biosensor. , 2001, Applied optics.

[12]  Yasha Yi,et al.  Reflection-mode sensing using optical microresonators , 2009 .

[13]  Kathleen Richardson,et al.  Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides. , 2007, Optics express.

[14]  Bruno Bureau,et al.  Advances in chalcogenide fiber evanescent wave biochemical sensing. , 2006, Analytical biochemistry.

[15]  Martin Richardson,et al.  PROGRESS ON THE FABRICATION OF ON-CHIP, INTEGRATED CHALCOGENIDE GLASS (CHG)-BASED SENSORS , 2010 .

[16]  Juejun Hu,et al.  Cavity-Enhanced IR Absorption in Planar Chalcogenide Glass Microdisk Resonators: Experiment and Analysis , 2009, Journal of Lightwave Technology.

[17]  Joel M. Harris,et al.  Laser induced thermal lens effect for calorimetric trace analysis , 1979 .

[18]  Kathleen Richardson,et al.  Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow. , 2010, Optics express.

[19]  Kathleen Richardson,et al.  Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing. , 2008, Optics letters.

[20]  S. Arnold,et al.  Shift of whispering-gallery modes in microspheres by protein adsorption. , 2003, Optics letters.

[21]  S. Shopova,et al.  Cavity-enhanced laser absorption spectroscopy using microresonator whispering-gallery modes. , 2007, Optics express.

[22]  Rajan P Kulkarni,et al.  Label-Free, Single-Molecule Detection with Optical Microcavities , 2007, Science.

[23]  M. Lipson,et al.  Sub-nm resolution cavity enhanced microspectrometer. , 2010, Optics express.

[24]  Stephen E. Bialkowski,et al.  Photothermal spectroscopy methods for chemical analysis , 1995 .

[25]  Juejun Hu,et al.  Design guidelines for optical resonator biochemical sensors , 2009 .

[26]  M. Lipson,et al.  Cavity-enhanced on-chip absorption spectroscopy using microring resonators. , 2008, Optics express.

[27]  T. L. Myers,et al.  Single-mode low-loss chalcogenide glass waveguides for the mid-infrared. , 2006, Optics letters.

[28]  Juejun Hu,et al.  Ultra-sensitive chemical vapor detection using micro-cavity photothermal spectroscopy. , 2010, Optics express.

[29]  Florent Colas,et al.  Chalcogenide Glass Optical Waveguides for Infrared Biosensing , 2009, Sensors.

[30]  Jeonghoon Lee,et al.  Photothermal Interferometric Aerosol Absorption Spectrometry , 2007 .

[31]  Vladimir S. Ilchenko,et al.  High-Q whispering-gallery mode sensor in liquids , 2002, SPIE LASE.