Facile Design of Asymmetric Flame-Retardant Gel Polymer Electrolyte with Excellent Interfacial Stability for Sodium Metal Batteries

[1]  Z. Wen,et al.  In situ generated composite gel polymer electrolyte with crosslinking structure for dendrite-free and high- performance sodium metal batteries , 2022, Energy Storage Materials.

[2]  Mao-wen Xu,et al.  Metal‐Organic Framework Enabling Poly(vinylidene fluoride)‐Based Polymer Electrolyte for Dendrite‐Free and Long‐Lifespan Sodium Metal Batteries , 2022, ENERGY & ENVIRONMENTAL MATERIALS.

[3]  Binghua Zhou,et al.  Cyclotriphosphazene-Based Flame-Retardant Polymer Electrolytes for High Performance Sodium Metal Batteries , 2022, SSRN Electronic Journal.

[4]  Shoujuan Wang,et al.  Cellulose acetate propionate incorporated PVDF-HFP based polymer electrolyte membrane for lithium batteries , 2022, Composites Communications.

[5]  J. Tu,et al.  A cleverly designed asymmetrical composite electrolyte via in-situ polymerization for high-performance, dendrite-free solid state lithium metal battery , 2022, Chemical Engineering Journal.

[6]  Quan-hong Yang,et al.  In‐situ Polymerized Gel Polymer Electrolytes with High Room‐Temperature Ionic Conductivity and Regulated Na+ Solvation Structure for Sodium Metal Batteries , 2022, Advanced Functional Materials.

[7]  S. Li,et al.  In-situ polymerization with dual-function electrolyte additive toward future lithium metal batteries , 2022, Materials Today Energy.

[8]  P. Král,et al.  Ultra-stable all-solid-state sodium metal batteries enabled by perfluoropolyether-based electrolytes , 2021, Nature Materials.

[9]  Wei Tang,et al.  Approaching Practically Accessible and Environmentally Adaptive Sodium Metal Batteries with High Loading Cathodes through In Situ Interlock Interface , 2022 .

[10]  Z. Bi,et al.  Dual-interface reinforced flexible solid garnet batteries enabled by in-situ solidified gel polymer electrolytes , 2021, Nano Energy.

[11]  Haitao Zhang,et al.  Constructing stable lithium interfaces via coordination of fluorinated ether and liquid crystal for room-temperature solid-state lithium metal batteries , 2021, Chemical Engineering Journal.

[12]  Yue Ma,et al.  Fumaronitrile-fixed in-situ gel polymer electrolyte balancing high safety and superior electrochemical performance for Li metal batteries , 2021, Energy Storage Materials.

[13]  H. Xiang,et al.  Ultrathin polymer-in-ceramic and ceramic-in-polymer bilayer composite solid electrolyte membrane for high-voltage lithium metal batteries , 2021, Journal of Membrane Science.

[14]  Yong‐Sheng Hu,et al.  Homogenous metallic deposition regulated by defect-rich skeletons for sodium metal batteries , 2021, Energy & Environmental Science.

[15]  Yeqiang Tan,et al.  A flame retarded polymer-based composite solid electrolyte improved by natural polysaccharides , 2021 .

[16]  A. Manthiram,et al.  Rationally Designed PEGDA-LLZTO Composite Electrolyte for Solid-State Lithium Batteries. , 2021, ACS applied materials & interfaces.

[17]  C. Liang,et al.  Inherently flame-retardant solid polymer electrolyte for safety-enhanced lithium metal battery , 2021 .

[18]  S. Dou,et al.  Polymer electrolytes for sodium-ion batteries , 2021, Energy Storage Materials.

[19]  Sungho Kim,et al.  Vinyl-Integrated In Situ Cross-Linked Composite Gel Electrolytes for Stable Lithium Metal Anodes , 2021 .

[20]  Q. Zhang,et al.  Nonflammable Quasi-Solid Electrolyte for Energy-Dense and Long-Cycling Lithium Metal Batteries with High-Voltage Ni-Rich Layered Cathodes , 2021, SSRN Electronic Journal.

[21]  H. Xiang,et al.  Gel polymer electrolyte based on PVDF-HFP matrix composited with rGO-PEG-NH2 for high-performance lithium ion battery , 2021 .

[22]  Kun Zhang,et al.  Flame-retardant gel polymer electrolyte and interface for quasi-solid-state sodium ion batteries , 2020 .

[23]  Won Bo Lee,et al.  Polymer‐Clay Nanocomposite Solid‐State Electrolyte with Selective Cation Transport Boosting and Retarded Lithium Dendrite Formation , 2020, Advanced Energy Materials.

[24]  Li-zhen Fan,et al.  Asymmetric Polymer Electrolyte Constructed by Metal–Organic Framework for Solid‐State, Dendrite‐Free Lithium Metal Battery , 2020, Advanced Functional Materials.

[25]  Darren H. S. Tan,et al.  Sodium‐Ion Batteries Paving the Way for Grid Energy Storage , 2020, Advanced Energy Materials.

[26]  Dong‐Won Kim,et al.  Solid polymer electrolyte supported by porous polymer membrane for all-solid-state lithium batteries , 2020 .

[27]  Yan‐Bing He,et al.  Building Artificial Solid‐Electrolyte Interphase with Uniform Intermolecular Ionic Bonds toward Dendrite‐Free Lithium Metal Anodes , 2020, Advanced Functional Materials.

[28]  Yongsong Luo,et al.  Dendrite-free lithium metal and sodium metal batteries , 2020 .

[29]  X. Qin,et al.  Quasi-Solid-State Dual-Ion Sodium Metal Batteries for Low-Cost Energy Storage , 2020, Chem.

[30]  G. Cui,et al.  Nonflammable Nitrile Deep Eutectic Electrolyte Enables High-Voltage Lithium Metal Batteries , 2020 .

[31]  Baohua Li,et al.  Deep Eutectic Solvent-Based Self-Healing Polymer Electrolyte for Safe and Long-Life Lithium Metal Batteries. , 2020, Angewandte Chemie.

[32]  Xian‐Xiang Zeng,et al.  A Flexible Solid Electrolyte with Multilayer Structure for Sodium Metal Batteries , 2020, Advanced Energy Materials.

[33]  Suli Chen,et al.  Plastic crystal polymer electrolytes containing boron based anion acceptors for room temperature all-solid-state sodium-ion batteries , 2019, Energy Storage Materials.

[34]  Jun Lu,et al.  Cross-linked beta alumina nanowires with compact gel polymer electrolyte coating for ultra-stable sodium metal battery , 2019, Nature Communications.

[35]  H. Dai,et al.  A safe and non-flammable sodium metal battery based on an ionic liquid electrolyte , 2019, Nature Communications.

[36]  Yayuan Liu,et al.  An Autotransferable g‐C3N4 Li+‐Modulating Layer toward Stable Lithium Anodes , 2019, Advanced materials.

[37]  Zongjie Sun,et al.  g-C3N4 nanosheets enhanced solid polymer electrolytes with excellent electrochemical performance, mechanical properties, and thermal stability , 2019, Journal of Materials Chemistry A.

[38]  Hongtao Qu,et al.  Safety-Enhanced Polymer Electrolytes for Sodium Batteries: Recent Progress and Perspectives. , 2019, ACS applied materials & interfaces.

[39]  Xueping Gao,et al.  Metalophilic Gel Polymer Electrolyte for in Situ Tailoring Cathode/Electrolyte Interface of High-Nickel Oxide Cathodes in Quasi-Solid-State Li-Ion Batteries. , 2019, ACS applied materials & interfaces.

[40]  Yan Yu,et al.  Safety of Sodium‐Ion Batteries: High‐Safety Nonaqueous Electrolytes and Interphases for Sodium‐Ion Batteries (Small 14/2019) , 2019, Small.

[41]  Jian-jun Zhang,et al.  Flame-retardant quasi-solid polymer electrolyte enabling sodium metal batteries with highly safe characteristic and superior cycling stability , 2019, Nano Research.

[42]  X. Sun,et al.  Anion-immobilized polymer electrolyte achieved by cationic metal-organic framework filler for dendrite-free solid-state batteries , 2019, Energy Storage Materials.

[43]  Jun Lu,et al.  Solid electrolytes and interfaces in all-solid-state sodium batteries: Progress and perspective , 2018, Nano Energy.

[44]  Qi Li,et al.  Recent Progress of the Solid‐State Electrolytes for High‐Energy Metal‐Based Batteries , 2018 .

[45]  Liping Sun,et al.  High-performance lithium-sulfur batteries based on self-supporting graphene/carbon nanotube foam@sulfur composite cathode and quasi-solid-state polymer electrolyte , 2018 .

[46]  M. Head‐Gordon,et al.  Modeling the charge transfer between alkali metals and polycyclic aromatic hydrocarbons using electronic structure methods. , 2010, The journal of physical chemistry. A.