Robust constraints on dark energy and gravity from galaxy clustering data

Galaxy clustering data provide a powerful probe of dark energy. We examine how the constraints on the scaled expansion history of the Universe, xh(z) =H(z)s (with s denoting the sound horizon at the drag epoch), and the scaled angular diameter distance, xd(z) =DA(z)/s, depend on the methods used to analyse the galaxy clustering data. We find that using the observed galaxy power spectrum, Pobsg(k), xh(z) and xd(z) are measured more accurately and are significantly less correlated with each other, compared to using only the information from the baryon acoustic oscillations (BAO) in Pobsg(k). Using the {xh(z), xd(z)} from Pobsg(k) gives a Dark Energy Task Force (DETF) dark energy figure of merit (FoM) approximately a factor of 2 larger than using the {xh(z), xd(z)} from BAO only; this provides a robust conservative method to go beyond BAO only in extracting dark energy information from galaxy clustering data. We find that a Stage IV galaxy redshift survey, with 0.7 < z < 2 over 15 000 (deg)2, can measure with high precision [where fg(z) and G(z) are the linear growth rate and factor of large-scale structure, respectively, and is the dimensionless normalization of Pobsg(k)], when redshift-space distortion information is included. The measurement of provides a powerful test of gravity, and significantly boosts the dark energy FoM when general relativity is assumed.

[1]  Adam G. Riess,et al.  Observational probes of cosmic acceleration , 2012, 1201.2434.

[2]  R. Nichol,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: measurements of the growth of structure and expansion rate at z = 0.57 from anisotropic clustering , 2012, 1203.6641.

[3]  Daniel Thomas,et al.  The clustering of galaxies in the sdss-iii baryon oscillation spectroscopic survey: Baryon acoustic oscillations in the data release 9 spectroscopic galaxy sample , 2012, 1312.4877.

[4]  A. Cuesta,et al.  A 2 per cent distance to $z$=0.35 by reconstructing baryon acoustic oscillations - I. Methods and application to the Sloan Digital Sky Survey , 2012, 1202.0090.

[5]  J. Weller,et al.  Probing dark energy with the next generation X-ray surveys of galaxy clusters , 2011, 1112.0327.

[6]  R. Nichol,et al.  Euclid Definition Study Report , 2011, 1110.3193.

[7]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: the growth rate of cosmic structure since redshift z=0.9 , 2011, 1104.2948.

[8]  Chia-Hsun Chuang,et al.  Measurements of H(z) and DA(z) from the two-dimensional two-point correlation function of Sloan Digital Sky Survey luminous red galaxies , 2011, 1102.2251.

[9]  T. Cham,et al.  Magnetically directed targeting aggregation of radiolabelled ferrite nanoparticles , 2011 .

[10]  Lado Samushia,et al.  Designing a space-based galaxy redshift survey to probe dark energy , 2010, 1006.3517.

[11]  Miao Li,et al.  Dark Energy , 2011, Dialogue: A Journal of Mormon Thought.

[12]  Yun Wang Dark Energy: WANG:DARK ENERGY O-BK , 2010 .

[13]  Portsmouth,et al.  Empirical Hα emitter count predictions for dark energy surveys , 2009, 0911.0686.

[14]  Alexander S. Szalay,et al.  Baryon Acoustic Oscillations in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample , 2009, 0907.1660.

[15]  A. Cimatti,et al.  Probing dark energy with future redshift surveys: a comparison of emission line and broad‐band selection in the near‐infrared , 2009, 0911.0669.

[16]  Alan Heavens,et al.  Weak lensing: Dark Matter, Dark Energy and Dark Gravity , 2009, 0911.0350.

[17]  Yun Wang Clarifying Forecasts of Dark Energy Constraints from Baryon Acoustic Oscillations , 2009, 0904.2218.

[18]  Christopher Hirata,et al.  Findings of the Joint Dark Energy Mission Figure of Merit Science Working Group , 2009, 0901.0721.

[19]  Case Western Reserve University,et al.  HALO OCCUPATION DISTRIBUTION MODELING OF CLUSTERING OF LUMINOUS RED GALAXIES , 2008, 0809.1868.

[20]  Yong-Seon Song,et al.  Reconstructing the history of structure formation using redshift distortions , 2008, 0807.0810.

[21]  D. Mota Probing dark energy at galactic and cluster scales , 2008, 0812.4493.

[22]  Yun Wang,et al.  Figure of merit for dark energy constraints from current observational data , 2008, 0803.4295.

[23]  M. Kunz,et al.  Planck priors for dark energy surveys , 2008, 0803.1616.

[24]  A. Mazure,et al.  A test of the nature of cosmic acceleration using galaxy redshift distortions , 2008, Nature.

[25]  Yun Wang Differentiating dark energy and modified gravity with galaxy redshift surveys , 2007, 0710.3885.

[26]  Scott Dodelson,et al.  Probing gravity at cosmological scales by measurements which test the relationship between gravitational lensing and matter overdensity. , 2007, Physical review letters.

[27]  Durham,et al.  The detectability of baryonic acoustic oscillations in future galaxy surveys. , 2007, astro-ph/0702543.

[28]  D. Eisenstein,et al.  Improved Forecasts for the Baryon Acoustic Oscillations and Cosmological Distance Scale , 2007, astro-ph/0701079.

[29]  C. Baugh,et al.  A primer on hierarchical galaxy formation: the semi-analytical approach , 2006, astro-ph/0610031.

[30]  M. Paré,et al.  Response to Editorial on Albrecht et al. (2006) , 2006, Pain.

[31]  Edward J. Wollack,et al.  Wilkinson Microwave Anisotropy Probe (WMAP) Three Year Results: Implications for Cosmology , 2006, astro-ph/0603449.

[32]  Yun Wang,et al.  Dark Energy Constraints from Baryon Acoustic Oscillations , 2006, astro-ph/0601163.

[33]  J. Tyson,et al.  Distance-redshift and growth-redshift relations as two windows on acceleration and gravitation: Dark energy or new gravity? , 2005, astro-ph/0503644.

[34]  M. Manera,et al.  Cluster number counts dependence on dark energy inhomogeneities and coupling to dark matter , 2005, astro-ph/0504519.

[35]  G. Starkman,et al.  Probing Newton's constant on vast scales: Dvali-Gabadadze-Porrati gravity, cosmic acceleration, and large scale structure , 2004, astro-ph/0401515.

[36]  D. Eisenstein,et al.  Probing Dark Energy with Baryonic Acoustic Oscillations from Future Large Galaxy Redshift Surveys , 2003, astro-ph/0307460.

[37]  Subhabrata Majumdar,et al.  Self-Calibration in Cluster Studies of Dark Energy: Combining the Cluster Redshift Distribution, the Power Spectrum, and Mass Measurements , 2003, astro-ph/0305341.

[38]  C. Blake,et al.  SUBMITTED TO THE ASTROPHYSICAL JOURNAL: MARCH 17, 2003 Preprint typeset using L ATEX style emulateapj v. 26/01/00 OVER 5000 DISTANT EARLY-TYPE GALAXIES IN COMBO-17: A RED SEQUENCE AND ITS EVOLUTION SINCE Z ∼ 1 , 2003 .

[39]  O. Lahav,et al.  The 2dF Galaxy Redshift Survey: The bias of galaxies and the density of the Universe , 2001, astro-ph/0112161.

[40]  M. Chevallier,et al.  ACCELERATING UNIVERSES WITH SCALING DARK MATTER , 2000, gr-qc/0009008.

[41]  P. Steinhardt,et al.  Cluster Abundance Constraints for Cosmological Models with a Time-varying, Spatially Inhomogeneous Energy Component with Negative Pressure , 1998 .

[42]  I. Hook,et al.  Measurements of Ω and Λ from 42 High-Redshift Supernovae , 1998, astro-ph/9812133.

[43]  A. G. Alexei,et al.  OBSERVATIONAL EVIDENCE FROM SUPERNOVAE FOR AN ACCELERATING UNIVERSE AND A COSMOLOGICAL CONSTANT , 1998 .

[44]  A. Riess,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[45]  Wayne Hu,et al.  Baryonic Features in the Matter Transfer Function , 1997, astro-ph/9709112.

[46]  Donald Hamilton,et al.  The evolving universe. Selected topics on large-scale structure and on the properties of galaxies , 1998 .

[47]  A. Hamilton Linear redshift distortions: A Review , 1997, astro-ph/9708102.

[48]  Max Tegmark Measuring Cosmological Parameters with Galaxy Surveys , 1997, astro-ph/9706198.

[49]  L. Verde,et al.  Large-scale bias in the Universe: bispectrum method , 1997, astro-ph/9706059.

[50]  N. Sugiyama,et al.  Small-Scale Cosmological Perturbations: An Analytic Approach , 1995, astro-ph/9510117.

[51]  J. Peacock,et al.  Power spectrum analysis of three-dimensional redshift surveys , 1993, astro-ph/9304022.

[52]  N. Kaiser Clustering in real space and in redshift space , 1987 .