A uniformly and optimally accurate multiscale time integrator method for the Klein-Gordon-Zakharov system in the subsonic limit regime

Abstract We present a uniformly and optimally accurate numerical method for discretizing the Klein–Gordon–Zakharov system (KGZ) with a dimensionless parameter 0 e ≤ 1 , which is inversely proportional to the acoustic speed. In the subsonic limit regime, i.e., 0 e ≪ 1 , the solution of KGZ system propagates waves with O ( e ) - and O ( 1 ) -wavelength in time and space, respectively, and rapid outspreading initial layers with speed O ( 1 ∕ e ) in space due to the singular perturbation of the wave operator in KGZ and/or the incompatibility of the initial data. Based on a multiscale decomposition by frequency and amplitude, we propose a multiscale time integrator Fourier pseudospectral method by applying the Fourier spectral discretization for spatial derivatives followed by using the exponential wave integrator in phase space for integrating the decomposed system at each time step. The method is explicit and easy to be implemented. Extensive numerical results show that the MTI-FP method converges optimally in both space and time, with exponential and quadratic convergence rate, respectively, which is uniformly for e ∈ ( 0 , 1 ] . Finally, the method is applied to study the convergence rates of the KGZ system to its limiting models in the subsonic limit and wave dynamics and interactions of the KGZ system in 2D.

[1]  Nicolas Crouseilles,et al.  Uniformly accurate numerical schemes for highly oscillatory Klein–Gordon and nonlinear Schrödinger equations , 2013, Numerische Mathematik.

[2]  Masahito Ohta,et al.  Strong Instability of Standing Waves for the Nonlinear Klein-Gordon Equation and the Klein-Gordon-Zakharov System , 2007, SIAM J. Math. Anal..

[3]  V. Zakharov Collapse of Langmuir Waves , 1972 .

[4]  Erwan Faou,et al.  Uniformly accurate exponential-type integrators for Klein-Gordon equations with asymptotic convergence to the classical NLS splitting , 2016, Math. Comput..

[5]  Chunmei Su,et al.  Uniform Error Bounds of a Finite Difference Method for the Zakharov System in the Subsonic Limit Regime via an Asymptotic Consistent Formulation , 2017, Multiscale Model. Simul..

[6]  K. Nakanishi,et al.  FROM THE KLEIN–GORDON–ZAKHAROV SYSTEM TO THE NONLINEAR SCHRÖDINGER EQUATION , 2005 .

[7]  Chunmei Su,et al.  Error estimates of a finite difference method for the Klein–Gordon–Zakharov system in the subsonic limit regime , 2018 .

[8]  Marlis Hochbruck,et al.  A Gautschi-type method for oscillatory second-order differential equations , 1999, Numerische Mathematik.

[9]  Weizhu Bao,et al.  Analysis and comparison of numerical methods for the Klein–Gordon equation in the nonrelativistic limit regime , 2011, Numerische Mathematik.

[10]  Katharina Schratz,et al.  From the Klein–Gordon–Zakharov system to the Klein–Gordon equation , 2016 .

[11]  Weizhu Bao,et al.  A uniformly accurate multiscale time integrator spectral method for the Klein-Gordon-Zakharov system in the high-plasma-frequency limit regime , 2016, J. Comput. Phys..

[12]  Lu-ming Zhang,et al.  Numerical simulation for the initial-boundary value problem of the Klein-Gordon-Zakharov equations , 2012 .

[13]  B. Texier WKB asymptotics for the Euler–Maxwell equations , 2005 .

[14]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[15]  Kimitoshi Tsutaya,et al.  Global existence of small amplitude solutions for the Klein-Gordon-Zakharov equations , 1994 .

[16]  Yongyong Cai,et al.  Uniform error estimates of the conservative finite difference method for the Zakharov system in the subsonic limit regime , 2018, Math. Comput..

[17]  Anders Wäänänen,et al.  Advanced resource connector middleware for lightweight computational Grids , 2007 .

[18]  W. Gautschi Numerical integration of ordinary differential equations based on trigonometric polynomials , 1961 .

[19]  Chunmei Su,et al.  A Uniformly and Optimally Accurate Method for the Zakharov System in the Subsonic Limit Regime , 2018, SIAM J. Sci. Comput..

[20]  Weizhu Bao,et al.  An Exponential Wave Integrator Sine Pseudospectral Method for the Klein-Gordon-Zakharov System , 2013, SIAM J. Sci. Comput..

[21]  P. Markowich,et al.  Numerical simulation of a generalized Zakharov system , 2004 .

[22]  Chunmei Su,et al.  Uniform error bounds of a finite difference method for the Klein-Gordon-Zakharov system in the subsonic limit regime , 2016, Math. Comput..

[23]  T. Ozawa,et al.  The nonlinear Schrödinger limit and the initial layer of the Zakharov equations , 1992, Differential and Integral Equations.

[24]  Tohru Ozawa,et al.  Well-posedness in energy space for the Cauchy problem of the Klein-Gordon-Zakharov equations with different propagation speeds in three space dimensions , 1999 .

[25]  T. Ozawa,et al.  Normal form and global solutions for the Klein-Gordon-Zakharov equations(Nonlinear Evolution Equations and Their Applications) , 1995 .

[26]  T. Colin,et al.  A perturbative analysis of the time-envelope approximation in strong Langmuir turbulence , 1996 .

[27]  Michael I. Weinstein,et al.  The nonlinear Schrödinger limit of the Zakharov equations governing Langmuir turbulence , 1986 .

[28]  K. Nakanishi,et al.  Energy convergence for singular limits of Zakharov type systems , 2008 .

[29]  Kenji Nakanishi,et al.  From the Klein–Gordon–Zakharov system to a singular nonlinear Schrödinger system , 2010 .

[30]  Volker Grimm,et al.  A note on the Gautschi-type method for oscillatory second-order differential equations , 2005, Numerische Mathematik.

[31]  Mehdi Dehghan,et al.  The solitary wave solution of coupled Klein-Gordon-Zakharov equations via two different numerical methods , 2013, Comput. Phys. Commun..

[32]  L. Einkemmer Structure preserving numerical methods for the Vlasov equation , 2016, 1604.02616.

[33]  Erwan Faou,et al.  Asymptotic preserving schemes for the Klein–Gordon equation in the non-relativistic limit regime , 2012, Numerische Mathematik.

[34]  Yuan Guangwei,et al.  Global smooth solution for the Klein–Gordon–Zakharov equations , 1995 .

[35]  P. Deuflhard A study of extrapolation methods based on multistep schemes without parasitic solutions , 1979 .

[36]  Xiaowei Jia,et al.  A Uniformly Accurate Multiscale Time Integrator Pseudospectral Method for the Dirac Equation in the Nonrelativistic Limit Regime , 2015, SIAM J. Numer. Anal..

[37]  Volker Grimm,et al.  On error bounds for the Gautschi-type exponential integrator applied to oscillatory second-order differential equations , 2005, Numerische Mathematik.

[38]  Chen Lin,et al.  Orbital stability of solitary waves for the Klein-Gordon-Zakharov equations , 1999 .