DYNAMIC RESPONSE OF A SPUR GEAR SYSTEM WITH UNCERTAIN PARAMETERS

In this paper, we propose a new approach for taking into account uncertainties based on the projection on polynomial chaos. The new approach is used to determine the dynamic response of a spur gear system with uncertainty associated to gear system parameters. The simulation results are obtained by the polynomial chaos approach for dynamic analysis under uncertainty. The proposed approach is an efficient probabilistic tool for uncertainty propagation. It has been found to be an interesting alternative to the parametric studies. The polynomial chaos results are compared with Monte Carlo simulations.

[1]  R. Askey,et al.  Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials , 1985 .

[2]  D. Xiu,et al.  Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .

[3]  R. Ghanem,et al.  A stochastic projection method for fluid flow. I: basic formulation , 2001 .

[4]  Manolis Papadrakakis,et al.  Parallel solution methods for stochastic finite element analysis using Monte Carlo simulation , 1999 .

[5]  Ronald L. Wasserstein,et al.  Monte Carlo: Concepts, Algorithms, and Applications , 1997 .

[6]  M.M.R. Williams,et al.  Polynomial chaos functions and stochastic differential equations , 2006 .

[7]  W. T. Martin,et al.  The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals , 1947 .

[8]  M. Haddar,et al.  Nonlinear dynamics of a two-stage gear system with mesh stiffness fluctuation, bearing flexibility and backlash , 2009 .

[9]  Adrian Sandu,et al.  Modeling Multibody Systems with Uncertainties. Part I: Theoretical and Computational Aspects , 2006 .

[10]  Abdelkhalak El Hami,et al.  Treatment of the composite fabric's shaping using a Lagrangian formulation , 2009, Math. Comput. Model..

[11]  Giorgio Dalpiaz,et al.  Dynamic Modelling of Gear System for Condition Monitoring and Diagnostics , 1996 .

[12]  D. Xiu,et al.  Modeling Uncertainty in Steady State Diffusion Problems via Generalized Polynomial Chaos , 2002 .

[13]  Roger Ghanem,et al.  Robust System Identification of Strongly Non-linear Dynamics Using a Polynomial Chaos-Based Sequential Data Assimilation Technique , 2007 .

[14]  Raúl Tempone,et al.  Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..

[15]  Bouchaib Radi,et al.  Some decomposition methods in the analysis of repetitive structures , 1996 .

[16]  Abdelkhalak El-Hami,et al.  Reliability-based design for soil tillage machines , 2011 .

[17]  Carl S. Byington,et al.  DYNAMIC SIMULATION OF MECHANICAL FAULT TRANSITION , 2001 .

[18]  BabuskaIvo,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007 .

[19]  Adrian Sandu,et al.  Modeling multibody systems with uncertainties. Part II: Numerical applications , 2006 .

[20]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[21]  Adrian Sandu,et al.  Modeling Multibody Dynamic Systems With Uncertainties . Part I : Theoretical and Computational Aspects , 2004 .

[22]  A. Monti,et al.  Indirect Measurements via a Polynomial Chaos Observer , 2006, IEEE Transactions on Instrumentation and Measurement.

[23]  D. Sarsri,et al.  Component mode synthesis and polynomial chaos expansions for stochastic frequency functions of large linear FE models , 2011 .

[24]  Olivier P. Le Maître,et al.  Polynomial chaos expansion for sensitivity analysis , 2009, Reliab. Eng. Syst. Saf..

[25]  Scott Cogan,et al.  Methods that combine finite group theory with component mode synthesis in the analysis of repetitive structures , 1993 .

[26]  H. Najm,et al.  A stochastic projection method for fluid flow II.: random process , 2002 .

[27]  Mohamed Haddar,et al.  A perturbation approach for the dynamic analysis of one stage gear system with uncertain nnparameters , 2015 .

[28]  N. Wiener The Homogeneous Chaos , 1938 .

[29]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[30]  Emmanuel D. Blanchard,et al.  Parameter estimation for mechanical systems via an explicit representation of uncertainty , 2009 .

[31]  S. Isukapalli,et al.  Stochastic Response Surface Methods (SRSMs) for Uncertainty Propagation: Application to Environmental and Biological Systems , 1998, Risk analysis : an official publication of the Society for Risk Analysis.

[32]  Mohamed Haddar,et al.  A polynomial chaos method to the analysis of the dynamic behavior of spur gear system , 2015 .