Application of a linear finite-frequency theory to time-lapse crosswell tomography in ultrasonic and numerical experiments

Time-lapse seismic monitoring is the geophysical discipline whereby multiple data sets recorded at the same location but at different times are used to locate and quantify temporal changes in the elastic parameters of the subsurface. We validate a time-lapse monitoring method by crosswell tomography using two types of wavefield-modeling experiments: (1) a 3D real ultrasonic waveform experiment and (2) 2D synthetic finite-difference wavefield simulations. For both wavefield experiments, a time-lapse structure simulating a fluid sweep in a reservoir layer is applied. The time-lapse tomographic monitoring approach is based on the standard ray theory and a finite-frequency wavefield theory, where the latter takes into account the finite-frequency properties of recorded wavefields. The inverted time-lapse models compiled with either the ray theory or the finite-frequency wavefield theory locate and correctly quantify the flooding zone in the simulated fluid sweep model. Both wavefield theories provide an adequate result because the flooding zone is comparable in size to the Fresnel volume.

[1]  Roel Snieder,et al.  Wavefield smoothing and the effect of rough velocity perturbations on arrival times and amplitudes , 1996 .

[2]  P. Hansen Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion , 1987 .

[3]  J. Trampert,et al.  Implementing spectral leakage corrections in global surface wave tomography , 2003 .

[4]  Martin Landrø,et al.  Discrimination between pressure and fluid saturation changes from time-lapse seismic data , 2001 .

[5]  Roel Snieder,et al.  A Guided Tour of Mathematical Methods: For the Physical Sciences , 2001 .

[6]  Paul G. Richards,et al.  Quantitative Seismology: Theory and Methods , 1980 .

[7]  B. Paulsson,et al.  The Steepbank crosswell seismic project: Reservoir definition and evaluation of steamflood technology in Alberta tar sands , 1994 .

[8]  D. Smeulders,et al.  Validation of first-order diffraction theory for the traveltimes and amplitudes of propagating waves , 2006 .

[9]  R. Pratt Seismic waveform inversion in the frequency domain; Part 1, Theory and verification in a physical scale model , 1999 .

[10]  Seismic-ray tracing , 1976 .

[11]  Helene Hafslund Veire,et al.  Seismic reservoir monitoring on Gullfaks , 1997 .

[12]  Guust Nolet,et al.  Three-dimensional sensitivity kernels for finite-frequency traveltimes: the banana–doughnut paradox , 1999 .

[13]  R. Snieder,et al.  The effect of small-scale heterogeneity on the arrival time of waves , 2001 .

[14]  Guust Nolet,et al.  Wavefront healing: a banana–doughnut perspective , 2001 .

[15]  Z. Xue,et al.  Time-lapse Seismic Crosswell Monitoring of CO 2 Injected In an Onshore Sandstone Aquifer , 2006 .

[16]  Martin Landrø,et al.  The Gullfaks 4D seismic study , 1999, Petroleum Geoscience.

[17]  Joakim O. Blanch,et al.  Viscoelastic finite-difference modeling , 1994 .

[18]  M. Landrø,et al.  Estimation of layer thickness and velocity changes using 4D prestack seismic data , 2006 .

[19]  Hideki Saito,et al.  Time-Lapse Crosswell Seismic Tomography for Monitoring Injected CO2 in an Onshore Aquifer, Nagaoka, Japan , 2006 .

[20]  W. Menke Geophysical data analysis : discrete inverse theory , 1984 .

[21]  Giancarlo Dal Moro,et al.  Time‐lapse tomography , 2003 .

[22]  P. Fail,et al.  4-D time lapse reservoir monitoring of Nelson Field, Central North Sea: Successful use of an integrated rock physics model to predict and track reservoir production , 2001 .

[23]  A. Bertrand,et al.  Seawater velocity variations and real-time reservoir monitoring , 2003 .

[24]  Fuchun Gao,et al.  Waveform tomography at a groundwater contamination site: VSP-surface data set , 2006 .

[25]  Aldo Vesnaver,et al.  Staggered or adapted grids for seismic tomography , 2000 .

[26]  Brackin A. Smith,et al.  4-D constrained depth conversion for reservoir compaction estimation Application to Ekofisk Field , 2002 .

[27]  Gilles Lambaré,et al.  Practical aspects and applications of 2D stereotomography , 2003 .

[28]  Roel Snieder,et al.  Model Estimations Biased by Truncated Expansions: Possible Artifacts in Seismic Tomography , 1996, Science.

[29]  J. Spetzler Time-Lapse Seismic Crosswell Monitoring of Steam Injection In Tar Sand , 2006 .

[30]  R. Snieder,et al.  The Fresnel volume and transmitted waves , 2004 .

[31]  Y. Kravtsov IV Rays and Caustics as Physical Objects , 1988 .

[32]  Johan O. A. Robertsson,et al.  Finite-difference modeling of wave propagation in a fluid-solid configuration , 2002 .

[33]  Norman Bleistein,et al.  Mathematical Methods for Wave Phenomena , 1984 .

[34]  The reciprocity properties of geometrical spreading , 2002 .

[35]  Neil R. Goulty,et al.  Study of traveltime and amplitude time-lapse tomography using physical model data , 1992 .

[36]  Marta Woodward,et al.  Wave-equation tomography , 1992 .