The emerging world of synthetic genetics.

For over 20 years, laboratories around the world have been applying the principles of Darwinian evolution to isolate DNA and RNA molecules with specific ligand-binding or catalytic activities. This area of synthetic biology, commonly referred to as in vitro genetics, is made possible by the availability of natural polymerases that can replicate genetic information in the laboratory. Moving beyond natural nucleic acids requires organic chemistry to synthesize unnatural analogues and polymerase engineering to create enzymes that recognize artificial substrates. Progress in both of these areas has led to the emerging field of synthetic genetics, which explores the structural and functional properties of synthetic genetic polymers by in vitro evolution. This review examines recent advances in the Darwinian evolution of artificial genetic polymers and their potential downstream applications in exobiology, molecular medicine, and synthetic biology.

[1]  M. Famulok,et al.  Functional Aptamers and Aptazymes in Biotechnology, Diagnostics, and Therapy , 2007 .

[2]  In vitro selection of phosphorothiolated aptamers. , 1998, Bioorganic & medicinal chemistry letters.

[3]  J. Szostak,et al.  TNA synthesis by DNA polymerases. , 2003, Journal of the American Chemical Society.

[4]  D. Gorenstein,et al.  Combinatorial selection, inhibition, and antiviral activity of DNA thioaptamers targeting the RNase H domain of HIV-1 reverse transcriptase. , 2005, Biochemistry.

[5]  B. Sullenger,et al.  Aptamers: an emerging class of therapeutics. , 2005, Annual review of medicine.

[6]  P. D. Cook,et al.  Oligodeoxynucleotides containing 2'-O-modified adenosine: synthesis and effects on stability of DNA:RNA duplexes. , 1993, Biochemistry.

[7]  S. Pitsch,et al.  Pyranosyl‐RNA: Base Pairing between Homochiral Oligonucleotide Strands of Opposite Sense of Chirality , 1996 .

[8]  P. Herdewijn,et al.  Recognition of threosyl nucleotides by DNA and RNA polymerases. , 2003, Nucleic acids research.

[9]  E. De Clercq,et al.  Synthesis, biological evaluation, and structure analysis of a series of new 1,5-anhydrohexitol nucleosides. , 1995, Journal of medicinal chemistry.

[10]  J. Szostak,et al.  Kinetic Analysis of an Efficient DNA-Dependent TNA Polymerase , 2005, Journal of the American Chemical Society.

[11]  Shigeyuki Yokoyama,et al.  An unnatural hydrophobic base pair with shape complementarity between pyrrole-2-carbaldehyde and 9-methylimidazo[(4,5)-b]pyridine. , 2003, Journal of the American Chemical Society.

[12]  John C. Chaput,et al.  Synthetic Genetic Polymers Capable of Heredity and Evolution , 2012, Science.

[13]  S. Tope,et al.  Aptamers as therapeutics , 2013 .

[14]  C. Wilds,et al.  2'-Deoxy-2'-fluoro-beta-D-arabinonucleosides and oligonucleotides (2'F-ANA): synthesis and physicochemical studies. , 2000, Nucleic acids research.

[15]  Karen M Polizzi What is synthetic biology? , 2013, Methods in molecular biology.

[16]  Nicholas V Hud,et al.  Primitive genetic polymers. , 2010, Cold Spring Harbor perspectives in biology.

[17]  E. Kool,et al.  Encoding phenotype in bacteria with an alternative genetic set. , 2011, Journal of the American Chemical Society.

[18]  L. Orgel,et al.  A Simpler Nucleic Acid , 2000, Science.

[19]  B. Ganem RNA world , 1987, Nature.

[20]  G. Mayer The chemical biology of aptamers. , 2009, Angewandte Chemie.

[21]  Young Jun Seo,et al.  PCR with an expanded genetic alphabet. , 2009, Journal of the American Chemical Society.

[22]  Y. Lin,et al.  Modified RNA sequence pools for in vitro selection. , 1994, Nucleic acids research.

[23]  Gerald F. Joyce,et al.  Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA , 1990, Nature.

[24]  B. Sullenger,et al.  In vivo selection of tumor-targeting RNA motifs , 2009, Nature chemical biology.

[25]  J W Szostak,et al.  In vitro genetics. , 1992, Trends in biochemical sciences.

[26]  G. F. Joyce,et al.  In vitro evolution of nucleic acids. , 1994, Current opinion in structural biology.

[27]  K. Mullis,et al.  Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. , 1988, Science.

[28]  Gerald F. Joyce,et al.  Ligand-dependent exponential amplification of a self-replicating L-RNA enzyme. , 2012, Journal of the American Chemical Society.

[29]  David R. Liu,et al.  Recent progress toward the templated synthesis and directed evolution of sequence-defined synthetic polymers. , 2009, Chemistry & biology.

[30]  Peter Scholz,et al.  Chemical Etiology of Nucleic Acid Structure: The α-Threofuranosyl-(3'→2') Oligonucleotide System , 2000 .

[31]  John J. Rossi,et al.  Selection, characterization and application of new RNA HIV gp 120 aptamers for facile delivery of Dicer substrate siRNAs into HIV infected cells , 2009, Nucleic acids research.

[32]  Fei Chen,et al.  Expanded genetic alphabets in the polymerase chain reaction. , 2010, Angewandte Chemie.

[33]  Floyd E Romesberg,et al.  Beyond A, C, G and T: augmenting nature's alphabet. , 2003, Current opinion in chemical biology.

[34]  Randy J Read,et al.  Crystal structure of double helical hexitol nucleic acids. , 2002, Journal of the American Chemical Society.

[35]  Dan Schneider,et al.  Expanding the chemistry of DNA for in vitro selection. , 2010, Journal of the American Chemical Society.

[36]  E. Kool,et al.  Difluorotoluene, a Nonpolar Isostere for Thymine, Codes Specifically and Efficiently for Adenine in DNA Replication. , 1997, Journal of the American Chemical Society.

[37]  W. Gilbert Origin of life: The RNA world , 1986, Nature.

[38]  Directed evolution: overcoming biology's limitations. , 2010, Nature chemical biology.

[39]  Sheela M. Waugh,et al.  2′-Fluoropyrimidine RNA-based Aptamers to the 165-Amino Acid Form of Vascular Endothelial Growth Factor (VEGF165) , 1998, The Journal of Biological Chemistry.

[40]  E. De Clercq,et al.  Synthesis and antiherpes virus activity of 1,5-anhydrohexitol nucleosides. , 1993, Journal of medicinal chemistry.

[41]  N. Dias,et al.  Antisense oligonucleotides: basic concepts and mechanisms. , 2002, Molecular cancer therapeutics.

[42]  K. Mullis,et al.  Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. , 1985, Science.

[43]  D. Mills,et al.  An extracellular Darwinian experiment with a self-duplicating nucleic acid molecule. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[44]  S. Watowich,et al.  Combinatorial selection of a RNA thioaptamer that binds to Venezuelan equine encephalitis virus capsid protein , 2007, FEBS letters.

[45]  E. Kool,et al.  Model systems for understanding DNA base pairing. , 2007, Current opinion in chemical biology.

[46]  A W Schwartz,et al.  The case for an ancestral genetic system involving simple analogues of the nucleotides. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[47]  The Resurgence of Acyclic Nucleic Acids , 2010, Chemistry & biodiversity.

[48]  A. Radeghieri,et al.  Expanding the substrate repertoire of a DNA polymerase by directed evolution. , 2004, Journal of the American Chemical Society.

[49]  C. Darwin The Origin of Species by Means of Natural Selection, Or, The Preservation of Favoured Races in the Struggle for Life , 2019 .

[50]  Stanley L. Miller,et al.  The Origin and Early Evolution of Life: Prebiotic Chemistry, the Pre-RNA World, and Time , 1996, Cell.

[51]  A. Bennett The Origin of Species by means of Natural Selection; or the Preservation of Favoured Races in the Struggle for Life , 1872, Nature.

[52]  M. Mascini,et al.  Aptamers as molecular tools for bioanalytical methods. , 2009, Current opinion in molecular therapeutics.

[53]  Eric T. Kool,et al.  Chemical and enzymatic properties of bridging 5'-S-phosphorothioester linkages in DNA , 1998, Nucleic Acids Res..

[54]  J. Szostak,et al.  In vitro selection of functional nucleic acids. , 1999, Annual review of biochemistry.

[55]  P. Marlière,et al.  Redesigning the leaving group in nucleic acid polymerization , 2012, FEBS letters.

[56]  Volker A. Erdmann,et al.  Mirror-design of L-oligonucleotide ligands binding to L-arginine , 1996, Nature Biotechnology.

[57]  Vitor B. Pinheiro,et al.  Evolving a polymerase for hydrophobic base analogues. , 2009, Journal of the American Chemical Society.

[58]  Thomas Lavergne,et al.  KlenTaq polymerase replicates unnatural base pairs by inducing a Watson-Crick geometry , 2012, Nature chemical biology.

[59]  G. F. Joyce,et al.  Directed evolution of nucleic acid enzymes. , 2003, Annual review of biochemistry.

[60]  C. Woese The genetic code : the molecular basis for genetic expression , 1967 .

[61]  P. Nielsen,et al.  Improved cellular uptake of antisense peptide nucleic acids by conjugation to a cell-penetrating peptide and a lipid domain. , 2011, Methods in molecular biology.

[62]  Petra Burgstaller,et al.  GnRH binding RNA and DNA Spiegelmers: a novel approach toward GnRH antagonism. , 2002, Chemistry & biology.

[63]  D. Gorenstein,et al.  Novel combinatorial selection of phosphorothioate oligonucleotide aptamers. , 1998, Biochemistry.

[64]  P. Herdewijn,et al.  1′, 5′ ‐Anhydrohexitol Oligonucleotides: Synthesis, Base Pairing and Recognition by Regular Oligodeoxyribonucleotides and Oligoribonucleotides , 1997 .

[65]  Anthony D. Keefe,et al.  Direct in vitro selection of a 2'-O-methyl aptamer to VEGF. , 2005, Chemistry & biology.

[66]  J. Chaput,et al.  A DNA pentaplex incorporating nucleobase quintets. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[67]  M. Hawthorne The Role of Chemistry in the Development of Boron Neutron Capture Therapy of Cancer , 1993 .

[68]  J. Szostak,et al.  Evolution of functional nucleic acids in the presence of nonheritable backbone heterogeneity , 2011, Proceedings of the National Academy of Sciences.

[69]  Thomas Lavergne,et al.  Major groove substituents and polymerase recognition of a class of predominantly hydrophobic unnatural base pairs. , 2012, Chemistry.

[70]  J. Feigon,et al.  Solution structure of a parallel-stranded oligoisoguanine DNA pentaplex formed by d(T(iG)4 T) in the presence of Cs+ ions. , 2012, Angewandte Chemie.

[71]  G. F. Joyce The antiquity of RNA-based evolution , 2002, Nature.

[72]  K. Alexander,et al.  High potency silencing by single-stranded boranophosphate siRNA , 2006, Nucleic acids research.

[73]  K. Alexander,et al.  RNA interference using boranophosphate siRNAs: structure-activity relationships. , 2004, Nucleic acids research.

[74]  V. Erdmann,et al.  Mirror-image RNA that binds D-adenosine , 1996, Nature Biotechnology.

[75]  G. Deleavey,et al.  Designing chemically modified oligonucleotides for targeted gene silencing. , 2012, Chemistry & biology.

[76]  Anthony D. Keefe,et al.  SELEX with modified nucleotides. , 2008, Current opinion in chemical biology.

[77]  J. Piccirilli,et al.  Synthesis, properties, and applications of oligonucleotides containing an RNA dinucleotide phosphorothiolate linkage. , 2011, Accounts of chemical research.

[78]  D. Appella Non-natural nucleic acids for synthetic biology. , 2009, Current opinion in chemical biology.

[79]  Piet Herdewijn,et al.  1',5'-anhydrohexitol oligonucleotides: Hybridisation and strand displacement with oligoribonucleotides, interaction with RNase H and HIV reverse transcriptase , 1997 .

[80]  Bruce A Luxon,et al.  Combinatorial selection of a single stranded DNA thioaptamer targeting TGF-beta1 protein. , 2008, Bioorganic & medicinal chemistry letters.

[81]  John C Chaput,et al.  Darwinian evolution of an alternative genetic system provides support for TNA as an RNA progenitor. , 2012, Nature chemistry.

[82]  A. Ellington,et al.  Evolution of a T7 RNA polymerase variant that transcribes 2′-O-methyl RNA , 2004, Nature Biotechnology.

[83]  L. Orgel Evolution of the genetic apparatus. , 1968, Journal of molecular biology.

[84]  Eric Meggers,et al.  A simple glycol nucleic acid. , 2005, Journal of the American Chemical Society.

[85]  J. Szostak,et al.  Expanding the structural and functional diversity of RNA: analog uridine triphosphates as candidates for in vitro selection of nucleic acids. , 2000, Nucleic acids research.

[86]  Markus Schmidt,et al.  Xenobiology: A new form of life as the ultimate biosafety tool , 2010, BioEssays : news and reviews in molecular, cellular and developmental biology.

[87]  M. Egholm,et al.  Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. , 1991, Science.

[88]  M. Hollenstein,et al.  A DNAzyme with Three Protein‐Like Functional Groups: Enhancing Catalytic Efficiency of M2+‐Independent RNA Cleavage , 2009, Chembiochem : a European journal of chemical biology.

[89]  J. Szostak,et al.  Aptamers selected for higher-affinity binding are not more specific for the target ligand. , 2006, Journal of the American Chemical Society.

[90]  M. Hollenstein,et al.  A self-cleaving DNA enzyme modified with amines, guanidines and imidazoles operates independently of divalent metal cations (M2+) , 2009, Nucleic acids research.

[91]  Fritz Eckstein,et al.  Oligonucleotide duplexes containing 2'-amino-2'-deoxycytidines: thermal stability and chemical reactivity [published erratum appears in Nucleic Acids Res 1994 Feb 25;22(4): 701] , 1994, Nucleic Acids Res..

[92]  R. Woodgate,et al.  Generic expansion of the substrate spectrum of a DNA polymerase by directed evolution , 2004, Nature Biotechnology.

[93]  G. F. Joyce,et al.  Forty years of in vitro evolution. , 2007, Angewandte Chemie.

[94]  J. Essigmann,et al.  Efficient replication bypass of size-expanded DNA base pairs in bacterial cells. , 2009, Angewandte Chemie.

[95]  John C Chaput,et al.  DNA polymerase-mediated DNA synthesis on a TNA template. , 2003, Journal of the American Chemical Society.

[96]  D. H. Burke,et al.  Boron-containing aptamers to ATP. , 2002, Nucleic acids research.

[97]  L. Gold,et al.  Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. , 1990, Science.

[98]  P. Nielsen,et al.  DNA analogues with nonphosphodiester backbones. , 1995, Annual review of biophysics and biomolecular structure.

[99]  S. Klußmann,et al.  A DNA Spiegelmer to staphylococcal enterotoxin B. , 2003, Nucleic acids research.

[100]  E. Kool Active site tightness and substrate fit in DNA replication. , 2002, Annual review of biochemistry.

[101]  J. Wengel,et al.  Locked vs. unlocked nucleic acids (LNA vs. UNA): contrasting structures work towards common therapeutic goals. , 2011, Chemical Society reviews.

[102]  Friedrich C. Simmel,et al.  Nucleic Acid Based Molecular Devices , 2011 .

[103]  R. Esnouf,et al.  Solution structure of a HNA-RNA hybrid. , 2000, Chemistry & biology.

[104]  John I. Loewenstein,et al.  Anti-vascular endothelial growth factor therapy for subfoveal choroidal neovascularization secondary to age-related macular degeneration: phase II study results. , 2003, Ophthalmology.

[105]  K. Thompson,et al.  2'-Deoxy purine, 2'-O-methyl pyrimidine (dRmY) aptamers as candidate therapeutics. , 2006, Oligonucleotides.

[106]  V V Demidov,et al.  Stability of peptide nucleic acids in human serum and cellular extracts. , 1994, Biochemical pharmacology.

[107]  A. Noronha,et al.  Synthesis and biophysical properties of arabinonucleic acids (ANA): circular dichroic spectra, melting temperatures, and ribonuclease H susceptibility of ANA.RNA hybrid duplexes. , 2000, Biochemistry.

[108]  Ilaria Palchetti,et al.  Nucleic acid and peptide aptamers: fundamentals and bioanalytical aspects. , 2012, Angewandte Chemie.

[109]  T. Cech,et al.  Self-splicing RNA: Autoexcision and autocyclization of the ribosomal RNA intervening sequence of tetrahymena , 1982, Cell.

[110]  Jack W. Szostak,et al.  An RNA motif that binds ATP , 1993, Nature.

[111]  Jianmin Gao,et al.  A Four-Base Paired Genetic Helix with Expanded Size , 2003, Science.

[112]  Friedrich Wöhler,et al.  Ueber künstliche Bildung des Harnstoffs , 1828 .

[113]  James M. Carothers,et al.  Informational Complexity and Functional Activity of RNA Structures , 2004, Journal of the American Chemical Society.

[114]  F. Crick Origin of the Genetic Code , 1967, Nature.

[115]  D. Richman,et al.  Isothermal, in vitro amplification of nucleic acids by a multienzyme reaction modeled after retroviral replication. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[116]  David R. Liu,et al.  An In Vitro Translation, Selection, and Amplification System for Peptide Nucleic Acids , 2009, Nature chemical biology.

[117]  J. Szostak,et al.  In vitro selection of RNA molecules that bind specific ligands , 1990, Nature.

[118]  Philippe Marlière,et al.  Toward Safe Genetically Modified Organisms through the Chemical Diversification of Nucleic Acids , 2009, Chemistry & biodiversity.

[119]  P. S. Kim,et al.  Bioactive and nuclease-resistant L-DNA ligand of vasopressin. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[120]  B. Nordén,et al.  Phospholipid membrane permeability of peptide nucleic acid , 1995, FEBS letters.

[121]  Steven A. Benner,et al.  Enzymatic incorporation of a new base pair into DNA and RNA extends the genetic alphabet , 1990, Nature.

[122]  Henry A. Erlich,et al.  Enzymatic amplification of ?-globin genomic sequences and restriction site analysis for diagnosis of , 1985 .

[123]  Larry W. McLaughlin,et al.  High fidelity TNA synthesis by Therminator polymerase , 2005, Nucleic acids research.