Non‐invasive detection of antibiotics and physiological substances in the aqueous humor by raman spectroscopy

Laser Raman spectroscopy is an inelastic light scattering technique able to characterize molecules in aqueous environments. The purpose of this work is to develop a non‐contact and non‐invasive spectroscopic method to identify and eventually quantify the presence of medicines (e.g., antibiotics) and physiological substances (e.g., glucose) in the aqueous humor of the eye.

[1]  J. Morookian,et al.  Measurement of amphotericin B concentration by resonant Raman spectroscopy--a novel technique that may be useful for non-invasive monitoring. , 2006, Medical mycology.

[2]  A. Manikas,et al.  Molecular Orientation of Poly(Ethylene Terephthalate) and Poly(Butylene Terephthalate) Probed by Polarized Raman Spectra: A Parallel Study , 2005, Applied spectroscopy.

[3]  James L Lambert,et al.  Determination of Glucose in Human Aqueous Humor Using Raman Spectroscopy and Designed-Solution Calibration , 2005, Applied spectroscopy.

[4]  James L Lambert,et al.  Glucose determination in human aqueous humor with Raman spectroscopy. , 2005, Journal of biomedical optics.

[5]  J. Mcgowan,et al.  Experimental Prediction of the Evolution of Ceftazidime Resistance in the CTX-M-2 Extended-Spectrum Beta-Lactamase , 2005, Antimicrobial Agents and Chemotherapy.

[6]  E. Lütjen-Drecoll,et al.  Innervation of the porcine ciliary muscle and outflow region , 2005, Journal of anatomy.

[7]  Robert R Alfano,et al.  Detection of glutamate in the eye by Raman spectroscopy. , 2003, Journal of biomedical optics.

[8]  M Motamedi,et al.  Non‐invasive monitoring of commonly used intraocular drugs against endophthalmitis by raman spectroscopy , 2003, Lasers in surgery and medicine.

[9]  John Michael Morookian,et al.  Measurement of aqueous glucose in a model anterior chamber using Raman spectroscopy , 2002 .

[10]  M Motamedi,et al.  Noninvasive detection of ganciclovir in ocular tissue by Raman spectroscopy: implication for monitoring of drug release. , 2002, Journal of ocular pharmacology and therapeutics : the official journal of the Association for Ocular Pharmacology and Therapeutics.

[11]  Y Zeng,et al.  A comparison of biomechanical properties between human and porcine cornea. , 2001, Journal of biomechanics.

[12]  H. Bruining,et al.  In vivo confocal Raman microspectroscopy of the skin: noninvasive determination of molecular concentration profiles. , 2001, The Journal of investigative dermatology.

[13]  Y. Ikada,et al.  Biodegradable scleral implant for intravitreal controlled release of ganciclovir , 2000, Graefe's Archive for Clinical and Experimental Ophthalmology.

[14]  M Motamedi,et al.  Non-invasive assessment of ocular pharmacokinetics using Confocal Raman Spectroscopy. , 1999, Journal of ocular pharmacology and therapeutics : the official journal of the Association for Ocular Pharmacology and Therapeutics.

[15]  M Motamedi,et al.  Noninvasive assessment of the hydration gradient across the cornea using confocal Raman spectroscopy. , 1998, Investigative ophthalmology & visual science.

[16]  Fred Hendrikse,et al.  Confocal Raman spectroscopy system for noncontact scanning of ocular tissues: an in vitro study , 1997 .

[17]  Massoud Motamedi,et al.  Raman Spectroscopy Studies of Metabolic Concentrations in Aqueous Solutions and Aqueous Humor Specimens , 1995 .

[18]  J I Coe,et al.  Postmortem Chemistry Update Emphasis on Forensic Application , 1993, The American journal of forensic medicine and pathology.

[19]  A R Forrest,et al.  Obtaining samples at post mortem examination for toxicological and biochemical analyses , 2004 .

[20]  E. Ralph,et al.  Comparative in vitro effects of liposomal amphotericin B, amphotericin B-deoxycholate, and free amphotericin B against fungal strains determined by using MIC and minimal lethal concentration susceptibility studies and time-kill curves , 1991, Antimicrobial Agents and Chemotherapy.

[21]  G. Michelone,et al.  Fluconazole vs amphotericin B: "in vitro" comparative evaluation of the minimal inhibitory concentration (MIC) against yeasts isolated from AIDS patients. , 1990, Microbiologica.

[22]  H. Gormsen,et al.  The diagnostic value of postmortem blood glucose determinations in cases of diabetes mellitus. , 1985, Forensic science international.

[23]  P. Davies,et al.  Aqueous humour glucose concentration in cataract patients and its effect on the lens. , 1984, Experimental eye research.

[24]  B. Rassow,et al.  Laserläsionen am Vorderabschnitt des Kaninchenauges , 1978, Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmologie.

[25]  A. B. Laursen CONCENTRATIONS OF SOME METABOLITES IN THE AQUEOUS HUMOUR OF HUMAN SENILE CATARACTOUS EYES , 1975, Acta ophthalmologica.

[26]  L. Welge-Lüssen,et al.  Proceedings: Post-mortem changes of glycolytic metabolite levels and amino acids in the aqueous and vitreous. , 1975, Experimental eye research.

[27]  F.H.M. Jongsma,et al.  Raman Spectroscopy in Ophthalmology: From Experimental Tool to Applications In Vivo , 2001, Lasers in Medical Science.

[28]  I Itzkan,et al.  Reagentless blood analysis by near-infrared Raman spectroscopy. , 1999, Diabetes technology & therapeutics.

[29]  G. Papatheodorou,et al.  The structure of molten mixtures of iron(III) chloride with caesium chloride , 1999 .

[30]  P. Steffes Laser-based measurement of glucose in the ocular aqueous humor: an efficacious portal for determination of serum glucose levels. , 1999, Diabetes technology & therapeutics.

[31]  M. Storrie-Lombardi,et al.  A noninvasive glucose monitor: preliminary results in rabbits. , 1999, Diabetes technology & therapeutics.