Predicting solvated peptide conformations via global minimization of energetic atom-to-atom interactions

Abstract A global optimization method is described for identifying the global minimum energy conformation, as well as lower and upper bounds on the global minimum conformer of solvated peptides. Potential energy contributions are calculated using the ECEPP/3 force field model. In considering the effects of hydration, two implicit free energy models are compared. One method is based on the calculation of solvent-accessible surface areas, while the other uses information on the solvent-accessible volume of hydration shells. Detailed information on the potential and solvation energy contributions is presented for the terminally blocked single residue peptides. In addition, based on a procedure that allows the exclusion of domains of the (φ, ψ) space, a number of oligopeptide structure prediction problems are considered, and the role of the solvation model in defining global minimum conformations is addressed.

[1]  Christodoulos A. Floudas,et al.  A deterministic global optimization approach for the protein folding problem , 1995, Global Minimization of Nonconvex Energy Functions: Molecular Conformation and Protein Folding.

[2]  A. Neumaier,et al.  A global optimization method, αBB, for general twice-differentiable constrained NLPs — I. Theoretical advances , 1998 .

[3]  J. Karle,et al.  Crystal structure of leucine-enkephalin , 1983, Nature.

[4]  Christodoulos A. Floudas,et al.  Deterministic Global Optimization in Design, Control, and Computational Chemistry , 1997 .

[5]  Frank Eisenhaber,et al.  Improved strategy in analytic surface calculation for molecular systems: Handling of singularities and computational efficiency , 1993, J. Comput. Chem..

[6]  Arnold Neumaier,et al.  Molecular Modeling of Proteins and Mathematical Prediction of Protein Structure , 1997, SIAM Rev..

[7]  Harold A. Scheraga,et al.  Intermolecular potentials from crystal data. III. Determination of empirical potentials and application to the packing configurations and lattice energies in crystals of hydrocarbons, carboxylic acids, amines, and amides , 1974 .

[8]  H. Scheraga,et al.  Energy parameters in polypeptides. 10. Improved geometrical parameters and nonbonded interactions for use in the ECEPP/3 algorithm, with application to proline-containing peptides , 1994 .

[9]  H A Scheraga,et al.  The Electrostatically Driven Monte Carlo method: Application to conformational analysis of decaglycine , 1991, Biopolymers.

[10]  K. Sharp,et al.  Macroscopic models of aqueous solutions : biological and chemical applications , 1993 .

[11]  Harold A. Scheraga,et al.  An efficient, differentiable hydration potential for peptides and proteins , 1996, J. Comput. Chem..

[12]  H. Scheraga,et al.  Computed conformational states of the 20 naturally occurring amino acid residues and of the prototype residue α-aminobutyric acid , 1983 .

[13]  M. L. Connolly Analytical molecular surface calculation , 1983 .

[14]  Christodoulos A. Floudas,et al.  Global optimization for molecular conformation problems , 1993, Ann. Oper. Res..

[15]  C. Anfinsen,et al.  The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain. , 1961, Proceedings of the National Academy of Sciences of the United States of America.

[16]  C. Floudas,et al.  A global optimization approach for Lennard‐Jones microclusters , 1992 .

[17]  Christodoulos A. Floudas,et al.  Rigorous convex underestimators for general twice-differentiable problems , 1996, J. Glob. Optim..

[18]  H. Scheraga,et al.  Conformational Energy Calculations on Polypeptides and Proteins , 1994 .

[19]  Christodoulos A Floudas,et al.  Global minimum potential energy conformations of small molecules , 1994, J. Glob. Optim..

[20]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[21]  Christodoulos A. Floudas,et al.  αBB: A global optimization method for general constrained nonconvex problems , 1995, J. Glob. Optim..

[22]  Chris Sander,et al.  The double cubic lattice method: Efficient approaches to numerical integration of surface area and volume and to dot surface contouring of molecular assemblies , 1995, J. Comput. Chem..

[23]  Werner Braun,et al.  Minimization of empirical energy functions in proteins including hydrophobic surface area effects , 1993, J. Comput. Chem..

[24]  Christodoulos A. Floudas,et al.  A global optimization method, αBB, for process design , 1996 .

[25]  Harold A. Scheraga,et al.  Predicting Three-Dimensional Structures of Oligopeptides , 1993 .

[26]  R. Hicks,et al.  Conformational analysis of met‐enkephalin in both aqueous solution and in the presence of sodium dodecyl sulfate micelles using multidimensional NMR and molecular modeling , 1992, Biopolymers.

[27]  Guoliang Xue,et al.  Global Minimization of Nonconvex Energy Functions: Molecular Conformation and Protein Folding, Proceedings of a DIMACS Workshop, USA, March 20-21, 1995 , 1995, Global Minimization of Nonconvex Energy Functions: Molecular Conformation and Protein Folding.

[28]  D. Osguthorpe,et al.  Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase‐trimethoprim, a drug‐receptor system , 1988, Proteins.

[29]  H. Scheraga,et al.  Conformational analysis of the 20 naturally occurring amino acid residues using ECEPP. , 1977, Macromolecules.

[30]  Hagai Meirovitch,et al.  New Theoretical Methodology for Elucidating the Solution Structure of Peptides from NMR Data. 3. Solvation Effects , 1996 .

[31]  Peter A. Kollman,et al.  FREE ENERGY CALCULATIONS : APPLICATIONS TO CHEMICAL AND BIOCHEMICAL PHENOMENA , 1993 .

[32]  M. Karplus,et al.  Analysis of Coupling Schemes in Free Energy Simulations: A Unified Description of Nonbonded Contributions to Solvation Free Energies , 1996 .

[33]  Aimo A. Törn,et al.  Global Optimization , 1999, Science.

[34]  K. Kopple,et al.  Solvent-dependent conformational distributions of some dipeptides , 1980 .

[35]  U. Singh,et al.  A NEW FORCE FIELD FOR MOLECULAR MECHANICAL SIMULATION OF NUCLEIC ACIDS AND PROTEINS , 1984 .

[36]  Christodoulos A. Floudas,et al.  Global optimization of MINLP problems in Process Synthesis and Design , 1997 .

[37]  H. Scheraga,et al.  Energy parameters in polypeptides. VII. Geometric parameters, partial atomic charges, nonbonded interactions, hydrogen bond interactions, and intrinsic torsional potentials for the naturally occurring amino acids , 1975 .

[38]  Harold A. Scheraga,et al.  Gradient discontinuities in calculations involving molecular surface area , 1994 .

[39]  N. Go,et al.  A Method of Rapid Calculation of a Second Derivative Matrix of Conformational Energy for Large Molecules , 1983 .

[40]  Norman L. Allinger,et al.  Molecular mechanics. The MM3 force field for hydrocarbons. 1 , 1989 .

[41]  G A Petsko,et al.  Aromatic-aromatic interaction: a mechanism of protein structure stabilization. , 1985, Science.

[42]  Effects of solvent on the conformation and the collective motions of a protein. II: Structure of hydration in melittin , 1993 .

[43]  Christodoulos A. Floudas,et al.  Deterministic Global Optimization , 1990 .

[44]  H. Scheraga,et al.  Empirical solvation models can be used to differentiate native from near‐native conformations of bovine pancreatic trypsin inhibitor , 1991, Proteins.

[45]  H. Scheraga,et al.  Pattern recognition in the prediction of protein structure. I. Tripeptide conformational probabilities calculated from the amino acid sequence , 1989 .

[46]  C. Floudas,et al.  A deterministic global optimization approach for molecular structure determination , 1994 .

[47]  Harold A. Scheraga,et al.  Structure and free energy of complex thermodynamic systems , 1988 .

[48]  C. Adjiman,et al.  A global optimization method, αBB, for general twice-differentiable constrained NLPs—II. Implementation and computational results , 1998 .

[49]  Akbar Nayeem,et al.  MSEED: A program for the rapid analytical determination of accessible surface areas and their derivatives , 1992 .

[50]  Harold A. Scheraga,et al.  Intermolecular potentials from crystal data. IV. Application of empirical potentials to the packing configurations and lattice energies in crystals of amino acids , 1974 .

[51]  H. Scheraga,et al.  Energy parameters in polypeptides. 9. Updating of geometrical parameters, nonbonded interactions, and hydrogen bond interactions for the naturally occurring amino acids , 1983 .

[52]  G. N. Ramachandran,et al.  Conformation of polypeptides and proteins. , 1968, Advances in protein chemistry.

[53]  M. Levitt Protein folding by restrained energy minimization and molecular dynamics. , 1983, Journal of molecular biology.

[54]  H A Scheraga,et al.  Empirical solvation models in the context of conformational energy searches: Application to bovine pancreatic trypsin inhibitor , 1992, Proteins.

[55]  P. Kollman,et al.  An all atom force field for simulations of proteins and nucleic acids , 1986, Journal of computational chemistry.