Effect of vanadium oxide addition on thermomechanical behaviors of borosilicate glasses: Toward development of high crack resistant glasses for nuclear waste disposal

[1]  M. Paris,et al.  Quantification of boron in aluminoborosilicate glasses using Raman and 11B NMR , 2019, Journal of Non-Crystalline Solids.

[2]  Cory L. Trivelpiece,et al.  Physical and optical properties of the International Simple Glass , 2019, npj Materials Degradation.

[3]  Jincheng Du,et al.  Structural features of ISG borosilicate nuclear waste glasses revealed from high-energy X-ray diffraction and molecular dynamics simulations , 2019, Journal of Nuclear Materials.

[4]  Siddharth Sundararaman,et al.  Understanding the structural origin of intermediate glasses , 2019 .

[5]  P. C. Rieke,et al.  Adaptation of the GRAAL model of Glass Reactivity to accommodate non-linear diffusivity , 2018, Journal of Nuclear Materials.

[6]  Morten Mattrup Smedskjær,et al.  Effect of nanoscale phase separation on the fracture behavior of glasses: Toward tough, yet transparent glasses , 2018, Physical Review Materials.

[7]  P. Frugier,et al.  Mechanisms involved in the increase of borosilicate glass alteration by interaction with the Callovian-Oxfordian clayey fraction , 2018, Applied Geochemistry.

[8]  S. Gin,et al.  Heavy ion radiation ageing impact on long-term glass alteration behavior , 2018, Journal of Nuclear Materials.

[9]  S. Gin,et al.  Effect of thermally induced structural disorder on the chemical durability of International Simple Glass , 2018, npj Materials Degradation.

[10]  N. Hyatt,et al.  Corrosion of the International Simple Glass under acidic to hyperalkaline conditions , 2018, npj Materials Degradation.

[11]  C. Jegou,et al.  Radiations effects in ISG glass: from structural changes to long-term aqueous behavior , 2018, npj Materials Degradation.

[12]  Toshihiro Tanaka,et al.  Structural behaviour of vanadium ions in alkali borosilicate glass for nuclear waste storage , 2018, Physics and Chemistry of Glasses: European Journal of Glass Science and Technology Part B.

[13]  J. J. Price,et al.  Crack-resistant glass with high shear band density , 2018, Journal of Non-Crystalline Solids.

[14]  P. Frugier,et al.  Application of GRAAL model to the resumption of International Simple Glass alteration , 2018, npj Materials Degradation.

[15]  S. Gin,et al.  Spectroscopic ellipsometry study of thickness and porosity of the alteration layer formed on international simple glass surface in aqueous corrosion conditions , 2018, npj Materials Degradation.

[16]  S. Kerisit,et al.  Structural role of ZrO2 and its impact on properties of boroaluminosilicate nuclear waste glasses , 2018, npj Materials Degradation.

[17]  S. Kerisit,et al.  Dynamics of self-reorganization explains passivation of silicate glasses , 2018, Nature Communications.

[18]  S. Gin,et al.  Impact of alkali on the passivation of silicate glass , 2018, npj Materials Degradation.

[19]  William E Lee,et al.  Degradation of partially immersed glass: A new perspective , 2018 .

[20]  P. C. Rieke,et al.  The dissolution behavior of borosilicate glasses in far-from equilibrium conditions , 2018 .

[21]  P. Frugier,et al.  Structure of International Simple Glass and properties of passivating layer formed in circumneutral pH conditions , 2018, npj Materials Degradation.

[22]  Jincheng Du,et al.  Mixed Network Former Effect on Structure, Physical Properties, and Bioactivity of 45S5 Bioactive Glasses: An Integrated Experimental and Molecular Dynamics Simulation Study. , 2018, The journal of physical chemistry. B.

[23]  P. Solari,et al.  Structural insights for the International Simple Glass by combining X-ray absorption spectroscopic analysis and atomistic modelling , 2017, Journal of Non-Crystalline Solids.

[24]  P. Frugier,et al.  Contribution of zeolite-seeded experiments to the understanding of resumption of glass alteration , 2017, npj Materials Degradation.

[25]  Cory L. Trivelpiece,et al.  Corrosion of ISG fibers in alkaline solutions , 2017 .

[26]  S. Yoshida,et al.  The fracture toughness of inorganic glasses , 2017 .

[27]  S. Gin,et al.  Various effects of magnetite on international simple glass (ISG) dissolution: implications for the long-term durability of nuclear glasses , 2017, npj Materials Degradation.

[28]  J. McCloy,et al.  The use of positrons to survey alteration layers on synthetic nuclear waste glasses , 2017 .

[29]  P. Frugier,et al.  Impact of iron and magnesium on glass alteration: Characterization of the secondary phases and determination of their solubility constants , 2017 .

[30]  Morten Mattrup Smedskjær,et al.  Discovery of Ultra-Crack-Resistant Oxide Glasses with Adaptive Networks , 2017 .

[31]  Marie Collin,et al.  Atom-Probe Tomography, TEM and ToF-SIMS study of borosilicate glass alteration rim: A multiscale approach to investigating rate-limiting mechanisms , 2017 .

[32]  K. Lemmens,et al.  Determination of the Forward Dissolution Rate for International Simple Glass in Alkaline Solutions , 2017 .

[33]  Liping Huang,et al.  Understanding Sodium Borate Glasses and Melts from Their Elastic Response to Temperature , 2016 .

[34]  Jincheng Du,et al.  Influence of low concentration V and Co oxide doping on the dissolution behaviors of simplified nuclear waste glasses , 2016 .

[35]  S. Gin,et al.  SON68 glass alteration under Si-rich solutions at low temperature (35–90 °C): kinetics, secondary phases and isotopic exchange studies , 2016 .

[36]  J. Guin,et al.  Understanding of the mechanical and structural changes induced by alpha particles and heavy ions in the French simulated nuclear waste glass , 2016 .

[37]  J. Somers,et al.  Self-healing capacity of nuclear glass observed by NMR spectroscopy , 2016, Scientific Reports.

[38]  S. Kerisit,et al.  Ion-Exchange Interdiffusion Model with Potential Application to Long-Term Nuclear Waste Glass Performance , 2016 .

[39]  Hiroyuki Inoue,et al.  Crack-resistant Al2O3–SiO2 glasses , 2016, Scientific Reports.

[40]  Hiroyuki Inoue,et al.  High Elastic Moduli of a 54Al2O3-46Ta2O5 Glass Fabricated via Containerless Processing , 2015, Scientific Reports.

[41]  Paulo Pereira,et al.  Corrigendum: Gap junctional protein Cx43 is involved in the communication between extracellular vesicles and mammalian cells , 2015, Scientific Reports.

[42]  M. Schweiger,et al.  Liquidus temperature and chemical durability of selected glasses to immobilize rare earth oxides waste , 2015 .

[43]  S. Gin,et al.  Glass Corrosion in the Presence of Iron-Bearing Materials and Potential Corrosion Suppressors , 2015 .

[44]  Yuanzheng Yue,et al.  Cation Diffusivity and the Mixed Network Former Effect in Borosilicate Glasses. , 2015, The journal of physical chemistry. B.

[45]  M. Kilburn,et al.  The mechanism of borosilicate glass corrosion revisited , 2015 .

[46]  J. Dellith,et al.  Plasticity, crack initiation and defect resistance in alkali-borosilicate glasses: From normal to anomalous behavior , 2015 .

[47]  A. Seyeux,et al.  Nanometre-scale evidence for interfacial dissolution-reprecipitation control of silicate glass corrosion. , 2015, Nature materials.

[48]  Liping Huang,et al.  In-situ Raman and Brillouin light scattering study of the international simple glass in response to temperature and pressure , 2015 .

[49]  P. Frugier,et al.  Origin and consequences of silicate glass passivation by surface layers , 2015, Nature Communications.

[50]  S. Gin,et al.  The fate of silicon during glass corrosion under alkaline conditions: A mechanistic and kinetic study with the International Simple Glass , 2015 .

[51]  I. Pegg Turning nuclear waste into glass , 2015 .

[52]  John D. Vienna,et al.  Toward Understanding the Effect of Low‐Activity Waste Glass Composition on Sulfur Solubility , 2014 .

[53]  Maxime Fournier,et al.  Resumption of nuclear glass alteration: State of the art , 2014 .

[54]  I. Monnet,et al.  Oxide glass structure evolution under swift heavy ion irradiation , 2014 .

[55]  S. Gin,et al.  Chemical Durability of Lanthanum‐Enriched Borosilicate Glass , 2013 .

[56]  A. Abdelouas,et al.  A Preliminary Investigation of the ISG Glass Vapor Hydration , 2013 .

[57]  P. Frugier,et al.  New Insight into the Residual Rate of Borosilicate Glasses: Effect of S/V and Glass Composition , 2013 .

[58]  K. Idemitsu,et al.  Initial Dissolution Rate of the International Simple Glass as a Function of pH and Temperature Measured Using Microchannel Flow‐Through Test Method , 2013 .

[59]  S. Gin,et al.  Antagonist effects of calcium on borosilicate glass alteration , 2013 .

[60]  T. Rouxel,et al.  Composition dependence of indentation deformation and indentation cracking in glass , 2013 .

[61]  K. Mueller,et al.  An international initiative on long-term behavior of high-level nuclear waste glass , 2013 .

[62]  Liping Huang,et al.  In-situ high temperature Raman and Brillouin light scattering studies of sodium silicate glasses , 2012 .

[63]  S. Gin,et al.  Effect of composition on the short-term and long-term dissolution rates of ten borosilicate glasses of increasing complexity from 3 to 30 oxides , 2012 .

[64]  Liping Huang,et al.  A simple and convenient set-up for high-temperature Brillouin light scattering , 2012 .

[65]  A. Clare,et al.  The Effects of Vanadium Additions on the Surface Tension of Soda Lime Silicate Melts , 2012 .

[66]  R. Lakes,et al.  Poisson's ratio and modern materials , 2011, Nature Materials.

[67]  Jürgen Horbach,et al.  Towards Ultrastrong Glasses , 2011, Advanced materials.

[68]  Stéphan Schumacher,et al.  Dissolution mechanism of the SON68 reference nuclear waste glass: New data in dynamic system in silica saturation conditions , 2011 .

[69]  I. Pegg,et al.  ICONE19-43576 Development of New Glass Formulations to Improve Waste Loading , 2011 .

[70]  I. Pegg,et al.  Vanadium and chromium redox behavior in borosilicate nuclear waste glasses , 2011 .

[71]  N. Hyatt,et al.  Mechanical properties of nuclear waste glasses , 2011 .

[72]  P. Frugier,et al.  Composition effects on synthetic glass alteration mechanisms: Part 1. Experiments , 2010 .

[73]  R. Hand,et al.  Mechanical properties of silicate glasses as a function of composition , 2010 .

[74]  S. Yoshida,et al.  Effect of densification on crack initiation under Vickers indentation test , 2010 .

[75]  John D. Vienna,et al.  Nuclear Waste Vitrification in the United States: Recent Developments and Future Options , 2010 .

[76]  Tanguy Rouxel,et al.  Indentation deformation mechanism in glass: Densification versus shear flow , 2010 .

[77]  K. Raj,et al.  Glass matrices for vitrification of radioactive waste – an Update on R & D Efforts , 2009 .

[78]  Patrick Jollivet,et al.  Insight into silicate-glass corrosion mechanisms. , 2008, Nature materials.

[79]  Eric M. Pierce,et al.  An experimental study of the dissolution rates of simulated aluminoborosilicate waste glasses as a function of pH and temperature under dilute conditions , 2008 .

[80]  R. Bradt,et al.  On the Vickers Indentation Fracture Toughness Test , 2007 .

[81]  T. Charpentier,et al.  Influence of glass composition and alteration solution on leached silicate glass structure: A solid-state NMR investigation , 2006 .

[82]  J. Sehgal,et al.  A New Low‐Brittleness Glass in the Soda‐Lime‐Silica Glass Family , 2005 .

[83]  I. Pegg,et al.  X-ray absorption studies of vanadium valence and local environment in borosilicate waste glasses using vanadium sulfide, silicate, and oxide standards , 2002 .

[84]  I. Ribet,et al.  Role and properties of the gel formed during nuclear glass alteration: importance of gel formation conditions , 2001 .

[85]  S. Gin,et al.  17O 3Q-MAS NMR characterization of a sodium aluminoborosilicate glass and its alteration gel , 2001 .

[86]  S. Gin,et al.  Alteration kinetics of a simplified nuclear glass in an aqueous medium: effects of solution chemistry and of protective gel properties on diminishing the alteration rate , 2000 .

[87]  K. M. Goff,et al.  Comparison of mechanical properties of glass-bonded sodalite and borosilicate glass high-level waste forms , 2000 .

[88]  J. Sehgal,et al.  Brittleness of glass , 1999 .

[89]  Steven J. Zinkle,et al.  Radiation effects in crystalline ceramics for the immobilization of high-level nuclear waste and plutonium , 1998 .

[90]  David K. Peeler,et al.  Measurement of kinetic rate law parameters on a NaCaAl borosilicate glass for low-activity waste , 1997 .

[91]  A. Varshneya Fundamentals of Inorganic Glasses , 1993 .

[92]  R. Newnham,et al.  Synthesis of V2O3 Powder by Evaporative Decomposition of Solutions and H2 Reduction , 1990 .

[93]  J. Bradley,et al.  Secondary Phase Formation During Nuclear Waste-Glass Dissolution , 1990 .

[94]  Rodney C. Ewing,et al.  Radioactive Waste Forms for the Future , 1988 .

[95]  P. J. Bray,et al.  The effect of molecular structure on borosilicate glass leaching , 1986 .

[96]  W. Weber,et al.  Indentation testing of nuclear-waste glasses , 1984 .

[97]  J. St-Pierre,et al.  Immobilization of radioactive wastes: Leachability of glasses containing zirconium , 1982 .

[98]  N. Miyata,et al.  Strength and fracture surface energy of phase-separated glasses , 1981 .

[99]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[100]  E. A. Charles,et al.  Fracture Toughness Determinations by Indentation , 1976 .

[101]  K. Sun,et al.  FUNDAMENTAL CONDITION OF GLASS FORMATION , 1947 .

[102]  C. P. Kaushik,et al.  Vanadium in Borosilicate Glass , 2015 .

[103]  J. McCloy,et al.  A Sampling Method for Semi-Quantitative and Quantitative Electron Microprobe Analysis of Glass Surfaces , 2015 .

[104]  Y. Gong,et al.  Quantitative morphological and compositional evaluation of laboratory prepared aluminoborosilicate glass surfaces , 2015 .

[105]  E. Pierce,et al.  Topography and Mechanical Property Mapping of International Simple Glass Surfaces with Atomic Force Microscopy , 2014 .

[106]  Y. Inagaki Micro-channel as a New Tool to Investigate Glass Dissolution Kinetics , 2014 .

[107]  D. Neuville,et al.  Sulfur behavior in silicate glasses and melts: Implications for sulfate incorporation in nuclear waste glasses as a function of alkali cation and V2O5 content , 2007 .

[108]  Ian L. Pegg,et al.  Compositional Effects on the Long-Term Durability of Nuclear Waste Glasses: A Statistical Approach , 2004 .

[109]  Jonathan P. Icenhower,et al.  Towards a consistent rate law: glass corrosion kinetics near saturation , 2004, Geological Society, London, Special Publications.

[110]  C. Leonelli,et al.  Vanadium doping in CaO-ZrO2-SiO2 glasses , 2002 .

[111]  J. L. Dussossoy,et al.  Current state of knowledge of nuclear waste glass corrosion mechanisms: the case of R7T7 glass , 1992 .

[112]  W. P. Freeborn,et al.  The Role of Boron in Monitoring the Leaching of Borosilicate Glass Waste Forms , 1984 .

[113]  B. Grambow,et al.  A General Rate Equation for Nuclear Waste Glass Corrosion , 1984 .