Grafted MXenes Based Electrolytes for 5V‐Class Solid‐State Batteries

[1]  C. Zhi,et al.  Categorizing wearable batteries: Unidirectional and omnidirectional deformable batteries , 2021, Matter.

[2]  C. Zhi,et al.  Adhesive and cohesive force matters in deformable batteries , 2021, npj Flexible Electronics.

[3]  Brian F. Donovan,et al.  High-temperature polymers with record-high breakdown strength enabled by rationally designed chain-packing behavior in blends , 2021, Matter.

[4]  C. Zhi,et al.  A Self‐Healing Crease‐Free Supramolecular All‐Polymer Supercapacitor , 2021, Advanced science.

[5]  Luyi Sun,et al.  High Performance Composite Polymer Electrolytes for Lithium‐Ion Batteries , 2021, Advanced Functional Materials.

[6]  Jihong Yu,et al.  A highly stable and flexible zeolite electrolyte solid-state Li–air battery , 2021, Nature.

[7]  Jinping Liu,et al.  Designing Polymer-in-Salt Electrolyte and Fully Infiltrated 3D Electrode for Integrated Solid-State Lithium Batteries. , 2021, Angewandte Chemie.

[8]  Zhiqiang Niu,et al.  Scalable Assembly of Flexible Ultrathin All‐in‐One Zinc‐Ion Batteries with Highly Stretchable, Editable, and Customizable Functions , 2021, Advanced materials.

[9]  Shrayesh N. Patel 100th Anniversary of Macromolecular Science Viewpoint: Solid Polymer Electrolytes in Cathode Electrodes for Lithium Batteries. Current Challenges and Future Opportunities. , 2021, ACS macro letters.

[10]  A. Manthiram,et al.  A review of composite polymer-ceramic electrolytes for lithium batteries , 2021 .

[11]  She-huang Wu,et al.  Composite Polymer Electrolytes Based on PVA/PAN for All-Solid-State Lithium Metal Batteries Operated at Room Temperature , 2020, ACS Applied Energy Materials.

[12]  Xinliang Li,et al.  Liquid‐Free All‐Solid‐State Zinc Batteries and Encapsulation‐Free Flexible Batteries Enabled by In Situ Constructed Polymer Electrolyte , 2020, Angewandte Chemie.

[13]  Kaiming Liao,et al.  Recent Advances in Filler Engineering of Polymer Electrolytes for Solid-State Li-Ion Batteries: A Review , 2020 .

[14]  J. Janek,et al.  Side by Side Battery Technologies with Lithium‐Ion Based Batteries , 2020, Advanced Energy Materials.

[15]  G. Cui,et al.  A High-Energy 5 V-Class Flexible Lithium-Ion Battery Endowed by Laser-Drilled Flexible Integrated Graphite Film. , 2020, ACS applied materials & interfaces.

[16]  J. Runt,et al.  A highly scalable dielectric metamaterial with superior capacitor performance over a broad temperature , 2020, Science Advances.

[17]  G. Cui,et al.  Overcoming the Challenges of 5 V Spinel LiNi0.5Mn1.5O4 Cathodes with Solid Polymer Electrolytes , 2019, ACS Energy Letters.

[18]  Yue Ma,et al.  Integrated Thin Film Battery Design for Flexible Lithium Ion Storage: Optimizing the Compatibility of the Current Collector‐Free Electrodes , 2019, Advanced Functional Materials.

[19]  G. Cui,et al.  Intermolecular Chemistry in Solid Polymer Electrolytes for High‐Energy‐Density Lithium Batteries , 2019, Advanced materials.

[20]  P. He,et al.  Solid-State Electrolytes for Lithium-Ion Batteries: Fundamentals, Challenges and Perspectives , 2019, Electrochemical Energy Reviews.

[21]  Xiulin Fan,et al.  Achieving High Energy Density through Increasing the Output Voltage: A Highly Reversible 5.3 V Battery , 2019, Chem.

[22]  Chaoyi Yan,et al.  Composite solid electrolytes for all-solid-state lithium batteries , 2019, Materials Science and Engineering: R: Reports.

[23]  Xi Chen,et al.  Designing Flexible Lithium-Ion Batteries by Structural Engineering , 2019, ACS Energy Letters.

[24]  A. Srinivasan,et al.  Accordion-like stretchable Li-ion batteries with high energy density , 2019, Energy Storage Materials.

[25]  M. S. Su’ait,et al.  In situ sol–gel preparation of ZrO2 in nano-composite polymer electrolyte of PVDF-HFP/MG49 for lithium-ion polymer battery , 2019, Journal of Sol-Gel Science and Technology.

[26]  Zhiqiang Niu,et al.  A Flexible All-in-One Lithium-Sulfur Battery. , 2018, ACS nano.

[27]  Yiju Li,et al.  All-in-One Compact Architecture toward Wearable All-Solid-State, High-Volumetric-Energy-Density Supercapacitors. , 2018, ACS applied materials & interfaces.

[28]  S. Indris,et al.  Delithiation/relithiation process of LiCoMnO4 spinel as 5 V electrode material , 2017 .

[29]  Luyi Yang,et al.  Flexible Composite Solid Electrolyte Facilitating Highly Stable “Soft Contacting” Li–Electrolyte Interface for Solid State Lithium‐Ion Batteries , 2017 .

[30]  Jun Chen,et al.  Stretchable Lithium‐Ion Batteries Enabled by Device‐Scaled Wavy Structure and Elastic‐Sticky Separator , 2017 .

[31]  Candace K. Chan,et al.  Composite Polymer Electrolytes with Li7La3Zr2O12 Garnet-Type Nanowires as Ceramic Fillers: Mechanism of Conductivity Enhancement and Role of Doping and Morphology. , 2017, ACS applied materials & interfaces.

[32]  Yasutaka Matsuda,et al.  Fabrication of thin-film lithium batteries with 5-V-class LiCoMnO4 cathodes , 2014 .

[33]  Keon Jae Lee,et al.  Bendable inorganic thin-film battery for fully flexible electronic systems. , 2012, Nano letters.

[34]  Yong Yang,et al.  Synthesis of LiCoMnO4 via a sol-gel method and its application in high power LiCoMnO4/Li4Ti5O12 lithium-ion batteries , 2012 .

[35]  A. Zalewska,et al.  Structure, transport properties and interfacial stability of PVdF/HFP electrolytes containing modified inorganic filler , 2007 .

[36]  L. Utracki Compatibilization of Polymer Blends , 2002 .

[37]  S. Reich,et al.  Phase separation of polymer blends in thin films , 1981 .