The Efficiency of Grain Alignment in Dense Interstellar Clouds: a Reassessment of Constraints from Near-Infrared Polarization

We present the results of a detailed study of interstellar polarization efficiency (as measured by the ratio -->pλ/τλ) toward molecular clouds, with the aim of discriminating between grain alignment mechanisms in dense regions of the interstellar medium. The data set includes both continuum measurements in the K (2.2 μm) passband and values based on ice and silicate spectral features. Background field stars are used to probe polarization efficiency in quiescent regions of dark clouds, yielding a dependence on visual extinction well-represented by a power law ( -->pλ/τλ [ AV]−0.52), in agreement with previous work. No significant change in this behavior is observed in the transition region between the diffuse outer layers and dense inner regions of clouds, where icy mantles are formed, and we conclude that mantle formation has little or no effect on the efficiency of grain alignment. The field-star data are used as a template for comparison with results for embedded young stellar objects (YSOs). The latter generally exhibit greater polarization efficiency compared with field stars at comparable extinctions, some displaying enhancements in -->pλ/τλ by factors of up to ~6 with respect to the power-law fit. Of the proposed alignment mechanisms, that based on radiative torques appears best able to explain the data. The attenuated external radiation field appears adequate to account for the observed polarization in quiescent regions for extinctions up to -->AV ~ 10 mag. Radiation from the embedded stars themselves may enhance alignment in the lines of sight to YSOs. Enhancements in -->pλ/τλ observed in the ice features toward several YSOs are of greatest significance, as they demonstrate efficient alignment in cold molecular clouds associated with star formation.

[1]  Jessie L. Dotson,et al.  The Far-Infrared Polarization Spectrum: First Results and Analysis , 1999 .

[2]  Department of Physics,et al.  Simulations of polarized dust emission , 2006, astro-ph/0609143.

[3]  B. Draine,et al.  Discrete-Dipole Approximation For Scattering Calculations , 1994 .

[4]  T. Roellig,et al.  The Relationship between the Optical Depth of the 9.7 μm Silicate Absorption Feature and Infrared Differential Extinction in Dense Clouds , 2007, 0707.3480.

[5]  M. Tamura,et al.  Infrared polarimetry of dark clouds – I. Magnetic field structure in Heiles Cloud 2 , 1987 .

[6]  M. Tamura,et al.  A two micron polarization survey of T Tauri stars , 1989 .

[7]  C. H. Smith,et al.  Studies in mid-infrared spectropolarimetry - II. An atlas of spectra , 2000 .

[8]  D. Ward-Thompson,et al.  First Observations of the Magnetic Field Geometry in Prestellar Cores , 2000 .

[9]  R. McMillan,et al.  Magnetic field structure in the Taurus dark cloud , 1984 .

[10]  T. Kerr,et al.  High-Resolution Studies of Solid CO in the Taurus Dark Cloud: Characterizing the Ices in Quiescent Clouds , 1995 .

[11]  F. Vrba,et al.  Further study of the stellar cluster embedded in the Ophiuchus dark cloud complex , 1975 .

[12]  A. Z. Dolginov,et al.  Orientation of cosmic dust grains , 1976 .

[13]  B. T. Draine,et al.  Radiative Torques on Interstellar Grains. III. Dynamics with Thermal Relaxation , 2002 .

[14]  B. Draine,et al.  Nuclear Spin Relaxation within Interstellar Grains , 1999, astro-ph/9903235.

[15]  Peter G. Martin,et al.  Interstellar Extinction and Polarization in the Infrared , 1990 .

[16]  M. Wolff,et al.  Scattering and Absorption by Aligned Grains in Circumstellar Environments , 2002 .

[17]  Marcia J. Lebofsky,et al.  The wavelength dependence of interstellar linear polarization - Stars with extreme values of lambda/max/ , 1982 .

[18]  E. Bergin,et al.  The Abundance of Carbon Dioxide Ice in the Quiescent Intracloud Medium , 2007 .

[19]  A. Chepurnov,et al.  Polarization of Dust Emission in Clumpy Molecular Clouds and Cores , 2006, astro-ph/0611324.

[20]  Philip C. Myers,et al.  On the Efficiency of Grain Alignment in Dark Clouds , 1997, astro-ph/9706163.

[21]  M. J. Wolff,et al.  An Extended Search for Circularly Polarized Infrared Radiation from the OMC-1 Region of Orion , 2005 .

[22]  A. Lazarian,et al.  Interstellar Polarization from CO and XCN Mantled Grains: A Severe Test for Grain Alignment Mechanisms , 1996 .

[23]  M. Tamura,et al.  A Near-Infrared Survey of the Taurus Molecular Cloud: Near-Infrared Luminosity Function , 1996 .

[24]  J. Hough,et al.  Spectropolarimetry of the 3-µm ice feature in molecular clouds – II. GL 2591, GL 2136, W33A and Elias 29 (ρ Ophiuchi dark cloud) , 1989 .

[25]  A. Lazarian Alignment of suprathermally rotating grains , 1995 .

[26]  J. Hough,et al.  Interstellar Extinction and Polarization in the Taurus Dark Clouds: The Optical Properties of Dust near the Diffuse/Dense Cloud Interface , 2001 .

[27]  Marcia J. Lebofsky,et al.  The wavelength dependence of interstellar linear polarization. , 1980 .

[28]  M. Casali Dichroic extinction and the infrared polarization of young stellar objects in the L1641 dark cloud , 1995 .

[29]  A. Lazarian,et al.  Tracing Magnetic Fields with Aligned Grains , 2007, 0707.0858.

[30]  J. Weingartner,et al.  Radiative Torques on Interstellar Grains. II. Grain Alignment , 1996, astro-ph/9611149.

[31]  K. Nordsieck,et al.  The Size distribution of interstellar grains , 1977 .

[32]  M. Tamura,et al.  Spectropolarimetry of the 3-μm ice band in Elias 16 (Taurus Dark Cloud) , 1988 .

[33]  F. Vrba,et al.  Observations of grain and magnetic field properties of the R Coronae Australis dark cloud. , 1981 .

[34]  J. Greenstein,et al.  The Polarization of Starlight by Aligned Dust Grains. , 1951 .

[35]  S. Wolf,et al.  Magnetic Field Evolution in Bok Globules , 2003, astro-ph/0303652.

[36]  K. Gordon,et al.  The Ultraviolet Extinction Curve of Intraclump Dust in Taurus (TMC-1): Constraints on the 2175 Å Bump Absorber , 2004 .

[37]  A. Goodman,et al.  Does near-infrared polarimetry reveal the magnetic field in cold dark clouds? , 1995 .

[38]  S. Strom,et al.  A 2-MICRON Map of the Ophiuchus Dark-Cloud Region , 1973 .

[39]  E. Lada,et al.  The Near-Infrared Extinction Law and Limits on the Pre-Main-Sequence Population of the ρ Ophiuchi Dark Cloud , 1998 .

[40]  A. LazarianB. Draine Thermal flipping and thermal trapping: New elements in grain dynamics , 1999 .

[41]  M. S. Matthews,et al.  Protostars & planets II , 1985 .

[42]  P. Roche,et al.  Infrared spectroscopy of dust in the Taurus dark clouds: ice and silicates , 1988 .

[43]  J. Elias An infrared study of the Ophiuchus dark cloud , 1978 .

[44]  David K. Aitken,et al.  Spectropolarimetry of the 3-μm water-ice feature towards young stellar objects , 2002 .

[45]  A. Lazarian,et al.  Radiative torques: analytical model and basic properties , 2007, 0707.0886.

[46]  Motohide Tamura,et al.  Interstellar polarization from 3 to 5 microns in reddened stars , 1992 .

[47]  Davis—Greenstein alignment of oblate spheroidal grains , 1998, astro-ph/9812329.

[48]  A. Goodman,et al.  The structure of magnetic fields in dark clouds: Infrared polarimetry in B216-217 , 1992 .

[49]  M. Schnaiter,et al.  Coagulation as Unifying Element for Interstellar Polarization , 2002 .

[50]  R. Loren The Cobwebs of Ophiuchus. I. Strands of 13CO: The Mass Distribution , 1989 .

[51]  A. Lazarian,et al.  Grain Alignment by Radiation in Dark Clouds and Cores , 2005 .

[52]  E. Purcell,et al.  Suprathermal rotation of interstellar grains , 1979 .

[53]  S. Bracker,et al.  A Survey for New Members of Taurus with the Spitzer Space Telescope , 2006 .

[54]  A. Goodman,et al.  The Polarizing Power of the Interstellar Medium in Taurus , 1998, astro-ph/9803199.

[55]  K. Sellgren,et al.  Grain mantles in the Taurus dark cloud , 1993 .

[56]  R. Seaman,et al.  A study of the stellar population in the Lynds 1641 dark cloud. I - The IRAS catalog sources , 1989 .

[57]  B. T. Draine,et al.  Radiative Torques on Interstellar Grains: I. Superthermal Spinup , 1996 .

[58]  J. Elias A study of the Taurus dark cloud complex , 1978 .

[59]  Jonathan P. Williams,et al.  Molecular CO Outflows in the L1641-N Cluster: Kneading a Cloud Core , 2006, astro-ph/0611052.

[60]  G. Rieke,et al.  Infrared polarimetry in the rho Ophiuchus dark cloud. , 1979 .

[61]  P. Gerakines,et al.  Grain Alignment in the Taurus Dark Cloud , 1995, astro-ph/9504100.