Observable measure of quantum coherence in finite dimensional systems.

Quantum coherence is the key resource for quantum technology, with applications in quantum optics, information processing, metrology, and cryptography. Yet, there is no universally efficient method for quantifying coherence either in theoretical or in experimental practice. I introduce a framework for measuring quantum coherence in finite dimensional systems. I define a theoretical measure which satisfies the reliability criteria established in the context of quantum resource theories. Then, I present an experimental scheme implementable with current technology which evaluates the quantum coherence of an unknown state of a d-dimensional system by performing two programmable measurements on an ancillary qubit, in place of the O(d2) direct measurements required by full state reconstruction. The result yields a benchmark for monitoring quantum effects in complex systems, e.g., certifying nonclassicality in quantum protocols and probing the quantum behavior of biological complexes.

[1]  Eugene P. Wigner,et al.  The Intrinsic Parity of Elementary Particles , 1952 .

[2]  E. Wigner,et al.  INFORMATION CONTENTS OF DISTRIBUTIONS. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[3]  L. Susskind,et al.  Charge Superselection Rule , 1967 .

[4]  Yakir Aharonov,et al.  Quantum Frames of Reference , 1984 .

[5]  M. Donald Free energy and the relative entropy , 1987 .

[6]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[7]  Jagdish Mehra,et al.  Philosophical Reflections and Syntheses , 1994 .

[8]  DiVincenzo Two-bit gates are universal for quantum computation. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[9]  A. Wightman Superselection rules; old and new , 1995 .

[10]  D. Petz,et al.  Geometries of quantum states , 1996 .

[11]  I. Chuang,et al.  Programmable Quantum Gate Arrays , 1997, quant-ph/9703032.

[12]  Shun-ichi Amari,et al.  Methods of information geometry , 2000 .

[13]  A. Acin,et al.  Optimal estimation of quantum dynamics , 2001 .

[14]  Asher Peres,et al.  Transmission of a Cartesian frame by a quantum system. , 2001, Physical review letters.

[15]  Radim Filip Overlap and entanglement-witness measurements , 2002 .

[16]  Paweł Horodecki,et al.  Direct estimations of linear and nonlinear functionals of a quantum state. , 2002, Physical review letters.

[17]  J. Paz,et al.  Quantum gate arrays can be programmed to evaluate the expectation value of any operator , 2003, quant-ph/0306143.

[18]  Stephen D Bartlett,et al.  Entanglement constrained by superselection rules. , 2003, Physical review letters.

[19]  T. Isola,et al.  Wigner–Yanase information on quantum state space: The geometric approach , 2003 .

[20]  S. Luo Wigner-Yanase skew information and uncertainty relations. , 2003, Physical review letters.

[21]  Howard M. Wiseman,et al.  Optical coherence and teleportation: why a laser is a clock, and not a quantum channel , 2003, SPIE International Symposium on Fluctuations and Noise.

[22]  Zhengmin Zhang,et al.  An Informational Characterization of Schrödinger's Uncertainty Relations , 2004 .

[23]  Todd A. Bruni Measuring polynomial functions of states , 2004, Quantum Inf. Comput..

[24]  J. Preskill,et al.  Superselection rules and quantum protocols , 2003, quant-ph/0310088.

[25]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[26]  G. D’Ariano,et al.  Efficient universal programmable quantum measurements. , 2004, Physical review letters.

[27]  S. Luo,et al.  Quantum versus classical uncertainty , 2005 .

[28]  S. Walborn,et al.  Experimental determination of entanglement with a single measurement , 2006, Nature.

[29]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[30]  T. Rudolph,et al.  Reference frames, superselection rules, and quantum information , 2006, quant-ph/0610030.

[31]  K. Jacobs,et al.  Tradeoff between extractable mechanical work, accessible entanglement, and ability to act as a reference system, under arbitrary superselection rules , 2008 .

[32]  Frank Hansen Metric adjusted skew information , 2008, Proceedings of the National Academy of Sciences.

[33]  R. Spekkens,et al.  Measuring the quality of a quantum reference frame: The relative entropy of frameness , 2009, 0901.0943.

[34]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[35]  C. P. Sun,et al.  Quantum Fisher information flow and non-Markovian processes of open systems , 2009, 0912.0587.

[36]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[37]  J. Vaccaro Particle-wave duality: a dichotomy between symmetry and asymmetry , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[38]  B. Sanders,et al.  Constructing monotones for quantum phase references in totally dephasing channels , 2011, 1104.1144.

[39]  Dorje C. Brody,et al.  Information geometry of density matrices and state estimation , 2010, 1009.1115.

[40]  Franco Nori,et al.  Witnessing Quantum Coherence: from solid-state to biological systems , 2012, Scientific Reports.

[41]  P. Perinotti,et al.  Teleportation transfers only speakable quantum information , 2010, 1008.0967.

[42]  C. H. Oh,et al.  Quantifying correlations via the Wigner-Yanase skew information , 2012 .

[43]  Maira Amezcua,et al.  Quantum Optics , 2012 .

[44]  G. Gour,et al.  Alignment of reference frames and an operational interpretation for the G-asymmetry , 2012, 1202.3163.

[45]  Ian Lewis,et al.  Proceedings of the SPIE , 2012 .

[46]  Measurement scheme for purity based on two two-body gates , 2012, 1201.2736.

[47]  Tamás Vértesi,et al.  Guaranteed violation of a Bell inequality without aligned reference frames or calibrated devices , 2011, Scientific Reports.

[48]  T. Rudolph,et al.  The Wigner–Araki–Yanase theorem and the quantum resource theory of asymmetry , 2012, 1209.0921.

[49]  V. D'Ambrosio,et al.  Complete experimental toolbox for alignment-free quantum communication , 2012, Nature Communications.

[50]  Davide Girolami,et al.  Characterizing nonclassical correlations via local quantum uncertainty. , 2012, Physical review letters.

[51]  B. Sanders,et al.  Quantum frameness for CPT symmetry. , 2013, Physical review letters.

[52]  M. Horodecki,et al.  QUANTUMNESS IN THE CONTEXT OF) RESOURCE THEORIES , 2012, 1209.2162.

[53]  I S Oliveira,et al.  Measuring bipartite quantum correlations of an unknown state. , 2013, Physical review letters.

[54]  Artur Ekert,et al.  Witnessing quantum coherence in the presence of noise , 2013, 1312.5724.

[55]  R. Spekkens,et al.  Modes of asymmetry: The application of harmonic analysis to symmetric quantum dynamics and quantum reference frames , 2013, 1312.0680.

[56]  M. Plenio,et al.  Quantifying coherence. , 2013, Physical review letters.

[57]  S. Huelga,et al.  Quantum non-Markovianity: characterization, quantification and detection , 2014, Reports on progress in physics. Physical Society.

[58]  T. Rudolph,et al.  Quantum and classical entropic uncertainty relations , 2014, 1402.1143.