Nonlinear Approximation with Local Fourier Bases

Abstract. It is shown that local Fourier bases are unconditional bases for the modulation spaces on R, including the Bessel potential spaces and the Segal algebra S0 . As a consequence, the abstract function spaces, that are defined by the approximation properties with respect to a local Fourier basis, are precisely the modulation space s.

[1]  S. B. Stechkin On absolute convergence of orthogonal series. I. , 1953 .

[2]  H. Feichtinger On a new Segal algebra , 1981 .

[3]  R. DeVore,et al.  Interpolation spaces and non-linear approximation , 1988 .

[4]  H. Feichtinger Atomic characterizations of modulation spaces through Gabor-type representations , 1989 .

[5]  E. Laeng UNE BASE ORTHONORMALE DE L2() DONT LES ELEMENTS SONT BIEN LOCALISES DANS L'ESPACE DE PHASE ET LEURS SUPPORTS ADAPTES A TOUTE PARTITION SYMETRIQUE DE L 'ESPACE DES FREQUENCES , 1990 .

[6]  I. Daubechies,et al.  A simple Wilson orthonormal basis with exponential decay , 1991 .

[7]  K. Gröchenig Describing functions: Atomic decompositions versus frames , 1991 .

[8]  Y. Meyer,et al.  Remarques sur l'analyse de Fourier à fenêtre , 1991 .

[9]  I. Daubechies,et al.  Erratum: A Simple Wilson Orthonormal Basis with Exponential Decay , 1991 .

[10]  H. Feichtinger,et al.  Gabor wavelets and the Heisenberg group: Gabor expansions and short time Fourier transform from the group theoretical point of view , 1993 .

[11]  R. DeVore,et al.  Compression of wavelet decompositions , 1992 .

[12]  D. Walnut,et al.  Wilson Bases and Modulation Spaces , 1992 .

[13]  R. DeVore,et al.  Fast wavelet techniques for near-optimal image processing , 1992, MILCOM 92 Conference Record.

[14]  G. Weiss,et al.  Local sine and cosine bases of Coifman and Meyer and the construction of smooth wavelets , 1993 .

[15]  D. Donoho Unconditional Bases Are Optimal Bases for Data Compression and for Statistical Estimation , 1993 .

[16]  Ronald A. DeVore,et al.  Some remarks on greedy algorithms , 1996, Adv. Comput. Math..

[17]  K. Gröchenig An uncertainty principle related to the Poisson summation formula , 1996 .