Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries

[1]  J. Cabana,et al.  X-ray Absorption Spectra of Dissolved Polysulfides in Lithium-Sulfur Batteries from First-Principles. , 2014, The journal of physical chemistry letters.

[2]  Ji‐Guang Zhang,et al.  Lewis acid-base interactions between polysulfides and metal organic framework in lithium sulfur batteries. , 2014, Nano letters.

[3]  H. Gasteiger,et al.  Probing the Lithium−Sulfur Redox Reactions: A Rotating-Ring Disk Electrode Study , 2014 .

[4]  Guang He,et al.  Tailoring porosity in carbon nanospheres for lithium-sulfur battery cathodes. , 2013, ACS nano.

[5]  Min-Kyu Song,et al.  A long-life, high-rate lithium/sulfur cell: a multifaceted approach to enhancing cell performance. , 2013, Nano letters.

[6]  Bruno Scrosati,et al.  Recent progress and remaining challenges in sulfur-based lithium secondary batteries--a review. , 2013, Chemical communications.

[7]  Jung Tae Lee,et al.  Plasma‐Enhanced Atomic Layer Deposition of Ultrathin Oxide Coatings for Stabilized Lithium–Sulfur Batteries , 2013 .

[8]  Linda F. Nazar,et al.  Sulfur Speciation in Li–S Batteries Determined by Operando X-ray Absorption Spectroscopy , 2013 .

[9]  T. Chivers,et al.  Ubiquitous Trisulfur Radical Anion: Fundamentals and Applications in Materials Science, Electrochemistry, Analytical Chemistry and Geochemistry , 2013 .

[10]  Zhan Lin,et al.  Lithium polysulfidophosphates: a family of lithium-conducting sulfur-rich compounds for lithium-sulfur batteries. , 2013, Angewandte Chemie.

[11]  Arumugam Manthiram,et al.  Highly reversible lithium/dissolved polysulfide batteries with carbon nanotube electrodes. , 2013, Angewandte Chemie.

[12]  M. Wagemaker,et al.  Properties and promises of nanosized insertion materials for Li-ion batteries. , 2013, Accounts of chemical research.

[13]  A. Manthiram,et al.  Challenges and prospects of lithium-sulfur batteries. , 2013, Accounts of chemical research.

[14]  L. Nazar,et al.  New approaches for high energy density lithium-sulfur battery cathodes. , 2013, Accounts of chemical research.

[15]  Guangmin Zhou,et al.  Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium-sulfur batteries. , 2013, ACS nano.

[16]  John B. Goodenough,et al.  The Li‐Ion Rechargeable Battery: A Perspective , 2013 .

[17]  C. Liang,et al.  Lithium superionic sulfide cathode for all-solid lithium-sulfur batteries. , 2013, ACS nano.

[18]  Guangyuan Zheng,et al.  Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries. , 2013, Nano letters.

[19]  Guangyuan Zheng,et al.  Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries , 2013, Nature Communications.

[20]  Zhian Zhang,et al.  Electrochemical Impedance Spectroscopy Study of a Lithium/Sulfur Battery: Modeling and Analysis of Capacity Fading , 2013 .

[21]  Arumugam Manthiram,et al.  Lithium–sulphur batteries with a microporous carbon paper as a bifunctional interlayer , 2012, Nature Communications.

[22]  Yang-Kook Sun,et al.  Challenges facing lithium batteries and electrical double-layer capacitors. , 2012, Angewandte Chemie.

[23]  Linda F. Nazar,et al.  Understanding the Nature of Absorption/Adsorption in Nanoporous Polysulfide Sorbents for the Li–S Battery , 2012 .

[24]  D. Xia,et al.  Fiber-like nanostructured Ti4O7 used as durable fuel cell catalyst support in oxygen reduction catalysis , 2012 .

[25]  Jae-Hun Kim,et al.  One-step synthesis of a sulfur-impregnated graphene cathode for lithium-sulfur batteries. , 2012, Physical chemistry chemical physics : PCCP.

[26]  A. Hayashi,et al.  High-capacity Li2S–nanocarbon composite electrode for all-solid-state rechargeable lithium batteries , 2012 .

[27]  Jun Liu,et al.  A Soft Approach to Encapsulate Sulfur: Polyaniline Nanotubes for Lithium‐Sulfur Batteries with Long Cycle Life , 2012, Advanced materials.

[28]  L. Nazar,et al.  Graphene-enveloped sulfur in a one pot reaction: a cathode with good coulombic efficiency and high practical sulfur content. , 2012, Chemical communications.

[29]  Gérard Férey,et al.  Cathode composites for Li-S batteries via the use of oxygenated porous architectures. , 2011, Journal of the American Chemical Society.

[30]  H. Dai,et al.  Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. , 2011, Nano letters.

[31]  L. Archer,et al.  Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. , 2011, Angewandte Chemie.

[32]  Xiulei Ji,et al.  Stabilizing lithium-sulphur cathodes using polysulphide reservoirs. , 2011, Nature communications.

[33]  Jinghua Guo,et al.  Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. , 2011, Journal of the American Chemical Society.

[34]  Bruno Scrosati,et al.  Moving to a Solid‐State Configuration: A Valid Approach to Making Lithium‐Sulfur Batteries Viable for Practical Applications , 2010, Advanced materials.

[35]  Doron Aurbach,et al.  Morphological and Structural Studies of Composite Sulfur Electrodes upon Cycling by HRTEM, AFM and Raman Spectroscopy , 2010 .

[36]  J. Baltrusaitis,et al.  XPS study of nitrogen dioxide adsorption on metal oxide particle surfaces under different environmental conditions. , 2009, Physical chemistry chemical physics : PCCP.

[37]  L. Nazar,et al.  A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. , 2009, Nature materials.

[38]  Tsutomu Ioroi,et al.  Stability of Corrosion-Resistant Magnéli-Phase Ti4O7-Supported PEMFC Catalysts at High Potentials , 2008 .

[39]  R. L. Clarke,et al.  Electrodes based on Magnéli phase titanium oxides: the properties and applications of Ebonex® materials , 1998 .

[40]  R. Yoon,et al.  An XPS Study of Sphalerite Activation by Copper , 1998 .

[41]  W. Stickle,et al.  Handbook of X-Ray Photoelectron Spectroscopy , 1992 .