Nodal Auxiliary Space Preconditioning in H(curl) and H(div) Spaces
暂无分享,去创建一个
[1] Andrea Toselli,et al. Overlapping and Multilevel Schwarz Methods for Vector Valued Elliptic Problems in Three Dimensions , 2000 .
[2] J. Nédélec. Mixed finite elements in ℝ3 , 1980 .
[3] M. Costabel. A remark on the regularity of solutions of Maxwell's equations on Lipschitz domains , 1990 .
[4] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[5] Ralf Hiptmair,et al. Analysis of multilevel methods for eddy current problems , 2003, Math. Comput..
[6] R. Hiptmair. Multigrid Method for Maxwell's Equations , 1998 .
[7] Rudolf Beck,et al. Algebraic Multigrid by Component Splitting for Edge Elements on Simplicial Triangulations , 1999 .
[8] J. Nédélec. A new family of mixed finite elements in ℝ3 , 1986 .
[9] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[10] M. Birman,et al. L2-Theory of the Maxwell operator in arbitrary domains , 1987 .
[11] Jun Zhao,et al. Overlapping Schwarz methods in H(curl) on polyhedral domains , 2002, J. Num. Math..
[12] Douglas N. Arnold,et al. Multigrid in H (div) and H (curl) , 2000, Numerische Mathematik.
[13] Joachim Schöberl,et al. An algebraic multigrid method for finite element discretizations with edge elements , 2002, Numer. Linear Algebra Appl..
[14] Tzanio V. Kolev,et al. Some experience with a H1-based auxiliary space AMG for H(curl)-problems , 2006 .
[15] Allen C. Robinson,et al. An Improved Algebraic Multigrid Method for Solving Maxwell's Equations , 2003, SIAM J. Sci. Comput..
[16] Jinchao Xu,et al. Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..
[17] F. Bornemann,et al. A Sharpened Condition Number Estimate for the BPX Preconditioner of Elliptic Finite Element Problems on Highly Nonuniform Triangulations , 2007 .
[18] D FalgoutRobert. An Introduction to Algebraic Multigrid , 2006 .
[19] L. R. Scott,et al. Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .
[20] Douglas N. Arnold,et al. MULTIGRID PRECONDITIONING IN H(div) ON NON-CONVEX POLYGONS* , 2007 .
[21] M. Costabel,et al. Maxwell and Lamé eigenvalues on polyhedra , 1999 .
[22] Keith D. Paulsen,et al. Nodal-based finite-element modeling of Maxwell's equations , 1992 .
[23] R. Hiptmair,et al. Local Multigrid in H(curl) , 2009, 0901.0764.
[24] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[25] V. Girault,et al. Vector potentials in three-dimensional non-smooth domains , 1998 .
[26] P S Vassilevski,et al. Parallel H1-based auxiliary space AMG solver for H(curl) problems , 2006 .
[27] R. Hiptmair. Finite elements in computational electromagnetism , 2002, Acta Numerica.
[28] M. Costabel. A coercive bilinear form for Maxwell's equations , 1991 .
[29] Ralf Hiptmair,et al. Coupling of Finite Elements and Boundary Elements in Electromagnetic Scattering , 2003, SIAM J. Numer. Anal..
[30] R. S. Falk,et al. PRECONDITIONING IN H (div) AND APPLICATIONS , 1997 .
[31] Jinchao Xu,et al. The auxiliary space method and optimal multigrid preconditioning techniques for unstructured grids , 1996, Computing.
[32] P. Oswald,et al. Remarks on the Abstract Theory of Additive and Multiplicative Schwarz Algorithms , 1995 .
[33] Ralf Hiptmair,et al. Discrete Hodge operators , 2001, Numerische Mathematik.