Zero truncated Poisson integer-valued AR(1) model

In this paper, we introduce a new stationary integer-valued autoregressive process of the first order with zero truncated Poisson marginal distribution. We consider some properties of this process, such as autocorrelations, spectral density and multi-step ahead conditional expectation, variance and probability generating function. Stationary solution and its uniqueness are obtained with a discussion to strict stationarity and ergodicity of such process. We estimate the unknown parameters by using conditional least squares estimation, nonparametric estimation and maximum likelihood estimation. The asymptotic properties and asymptotic distributions of the conditional least squares estimators have been investigated. Some numerical results of the estimators are presented and some sample paths of the process are illustrated. Some possible applications of the introduced model are discussed.

[1]  Li Yuan,et al.  THE INTEGER‐VALUED AUTOREGRESSIVE (INAR(p)) MODEL , 1991 .

[2]  Maria Eduardo da Silva,et al.  Difference Equations for the Higher‐Order Moments and Cumulants of the INAR(1) Model , 2004 .

[3]  Hassan S. Bakouch,et al.  A new geometric first-order integer-valued autoregressive (NGINAR(1)) process , 2009 .

[4]  Mohamed Alosh,et al.  FIRST‐ORDER INTEGER‐VALUED AUTOREGRESSIVE (INAR(1)) PROCESS , 1987 .

[5]  A. W. Kemp,et al.  Univariate Discrete Distributions , 1993 .

[6]  A. Alzaid,et al.  Some autoregressive moving average processes with generalized Poisson marginal distributions , 1993 .

[7]  Yousung Park,et al.  Some asymptotic properties in INAR(1) processes with Poisson marginals , 1997 .

[8]  Somnath Datta,et al.  First-order random coefficient integer-valued autoregressive processes , 2007 .

[9]  Benjamin Kedem,et al.  Regression Models for Time Series Analysis: Kedem/Time Series Analysis , 2005 .

[10]  Mohamed Alosh,et al.  First‐Order Integer‐Valued Autoregressive (INAR (1)) Process: Distributional and Regression Properties , 1988 .

[11]  R. Brent Table errata: Algorithms for minimization without derivatives (Prentice-Hall, Englewood Cliffs, N. J., 1973) , 1975 .

[12]  Benjamin Kedem,et al.  Regression models for time series analysis , 2002 .

[13]  Harry Joe,et al.  Modelling Count Data Time Series with Markov Processes Based on Binomial Thinning , 2006 .

[14]  E. McKenzie,et al.  Some ARMA models for dependent sequences of poisson counts , 1988, Advances in Applied Probability.

[15]  Ed. McKenzie,et al.  SOME SIMPLE MODELS FOR DISCRETE VARIATE TIME SERIES , 1985 .

[16]  Ross Ihaka,et al.  Gentleman R: R: A language for data analysis and graphics , 1996 .

[17]  Fw Fred Steutel,et al.  Discrete analogues of self-decomposability and stability , 1979 .

[18]  Dag Tjøstheim,et al.  Estimation in nonlinear time series models , 1986 .

[19]  B. G. Quinn,et al.  Random Coefficient Autoregressive Models: An Introduction , 1982 .

[20]  Christian H. Weiß,et al.  Thinning operations for modeling time series of counts—a survey , 2008 .