An automatic temperature compensation of internal sense ground for subquarter micron DRAM's

This paper describes DRAM array driving techniques and the parameter scaling techniques for low voltage operation using the boosted sense ground (BSG) scheme and further improved methods. Temperature compensation and adjustable internal voltage levels maintain a small subthreshold leakage current for a memory cell transistor (MC-Tr), and a distributed BSG (DBSG) scheme and a column decoded sensing (CDS) scheme achieve the effective scaling. These schemes can set the DRAM array free from the leakage current problem and the influence of temperature variations. Therefore, parameters for the MC-Tr, threshold voltage (V/sub th/), and the boosted voltage for the gate bias can be scaled down, and it is possible to determine the V/sub th/ of the MC-Tr simply (0.45 V at K=0.4) for the satisfaction of the small leakage current, for high speed and stable operation, and for high reliability (V/sub PP/ is below 2 V/sub CC/). They are applicable to subquarter micron DRAM's of 256 Mb and more. >

[1]  Hideto Hidaka,et al.  An Automatic Temperature Compensation Of Internal Sense Ground For Sub-quarter Micron Drams , 1994, Proceedings of 1994 IEEE Symposium on VLSI Circuits.

[2]  Masashi Horiguchi,et al.  Switched-source-impedance CMOS circuit for low standby subthreshold current giga-scale LSI's , 1993 .

[3]  Kiyoo Itoh,et al.  A 1.5 V DRAM for battery-based applications , 1989, IEEE International Solid-State Circuits Conference, 1989 ISSCC. Digest of Technical Papers.

[4]  J. Fellrath,et al.  CMOS analog integrated circuits based on weak inversion operations , 1977 .

[5]  Hideto Hidaka,et al.  An SOI-DRAM with wide operating voltage range by CMOS/SIMOX technology , 1994 .

[6]  Hideto Hidaka,et al.  A 34 ns 256 Mb DRAM with boosted sense-ground scheme , 1994, Proceedings of IEEE International Solid-State Circuits Conference - ISSCC '94.

[7]  K. Itoh,et al.  Subthreshold-current reduction circuits for multi-gigabit DRAM's , 1993, Symposium 1993 on VLSI Circuits.

[8]  Hiroyuki Yamauchi,et al.  A 20 ns battery-operated 16 Mb CMOS DRAM , 1993, 1993 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[9]  Takayuki Kawahara,et al.  A circuit technology for sub-10-ns ECL 4-Mb BiCMOS DRAM's , 1991 .

[10]  Takeshi Sakata,et al.  Subthreshold-current reduction circuits for multi-gigabit DRAM's , 1994 .

[11]  K. Arimoto,et al.  A well-synchronized sensing/equalizing method for sub-1.0 V operating advanced DRAMs , 1993, Symposium 1993 on VLSI Circuits.

[12]  S. Watanabe,et al.  Stand-by/active mode logic for sub-1 V 1 G/4 Gb DRAMs , 1993, Symposium 1993 on VLSI Circuits.

[13]  R. Scheuerlein,et al.  A 14-ns 14-Mb CMOS DRAM with 300-mW active power , 1992 .

[14]  Yoshikazu Morooka,et al.  An efficient back-bias generator with hybrid pumping circuit for 1.5-V DRAMs , 1994 .

[15]  K. Sakurai,et al.  Decoded-source sense amplifier for high-density DRAMs , 1989, Symposium 1989 on VLSI Circuits.

[16]  Y. Tsukikawa,et al.  An efficient back-bias generator with hybrid pumping circuit for 1.5 V DRAMs , 1993, Symposium 1993 on VLSI Circuits.

[17]  R. Izawa,et al.  A 1.5 V circuit technology for 64 Mb DRAMs , 1990, Digest of Technical Papers., 1990 Symposium on VLSI Circuits.