Radial basis functions collocation and a unified formulation for bending, vibration and buckling analysis of laminated plates, according to a variation of Murakami’s zig-zag theory

Abstract In this paper, we propose a variation of the use of Murakami’s zig-zag theory for the analysis of laminated plates. The new theory accounts for through-the-thickness deformation, by considering a quadratic evolution of the transverse displacement with the thickness coordinate. The equations of motion and the boundary conditions are obtained by the Carrera’s Unified Formulation, and further interpolated by collocation with radial basis functions. This paper considers the analysis of static deformations, free vibrations and buckling loads on laminated composite plates.

[1]  R. D. Mindlin,et al.  Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates , 1951 .

[2]  J. Vinson The Behavior of Sandwich Structures of Isotropic and Composite Materials , 1999 .

[3]  S. Xiang,et al.  Analysis of isotropic, sandwich and laminated plates by a meshless method and various shear deformation theories , 2009 .

[4]  J. Reddy Mechanics of laminated composite plates and shells : theory and analysis , 1996 .

[5]  Holm Altenbach,et al.  Theories for laminated and sandwich plates , 1998 .

[6]  Mo Shing Cheung,et al.  Finite Strip Analysis of Anisotropic Laminated Composite Plates Using Higher-Order Shear Deformation Theory" , 1994 .

[7]  Guirong Liu,et al.  An edge-based smoothed finite element method for analysis of two-dimensional piezoelectric structures , 2009 .

[8]  E. Carrera C0 REISSNER–MINDLIN MULTILAYERED PLATE ELEMENTS INCLUDING ZIG-ZAG AND INTERLAMINAR STRESS CONTINUITY , 1996 .

[9]  Luciano Demasi,et al.  2D, Quasi 3D and 3D Exact Solutions for Bending of Thick and Thin Sandwich Plates , 2008 .

[10]  A. Noor,et al.  Assessment of computational models for sandwich panels and shells , 1995 .

[11]  E. Carrera On the use of the Murakami's zig-zag function in the modeling of layered plates and shells , 2004 .

[12]  Erasmo Carrera,et al.  Evaluation of Layerwise Mixed Theories for Laminated Plates Analysis , 1998 .

[13]  Guirong Liu,et al.  An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids , 2009 .

[14]  J. Reddy Mechanics of laminated composite plates : theory and analysis , 1997 .

[15]  Ping Lin,et al.  Numerical analysis of Biot's consolidation process by radial point interpolation method , 2002 .

[16]  K. M. Liew,et al.  Bending and buckling of thick symmetric rectangular laminates using the moving least-squares differential quadrature method , 2003 .

[17]  D. Zenkert An Introduction to Sandwich Structures , 1995 .

[18]  Y. Hon,et al.  Multiquadric method for the numerical solution of a biphasic mixture model , 1997 .

[19]  G. R. Liu,et al.  On Smoothed Finite Element Methods , 2010 .

[20]  J. N. Reddy,et al.  BUCKLING OF SYMMETRICALLY LAMINATED COMPOSITE PLATES USING THE ELEMENT-FREE GALERKIN METHOD , 2002 .

[21]  C.M.C. Roque,et al.  Analysis of composite plates using higher-order shear deformation theory and a finite point formulation based on the multiquadric radial basis function method , 2003 .

[22]  K. M. Liew,et al.  Vibration analysis of symmetrically laminated plates based on FSDT using the moving least squares differential quadrature method , 2003 .

[23]  Hung Nguyen-Xuan,et al.  An edge-based smoothed finite element method (ES-FEM) with stabilized discrete shear gap technique for analysis of Reissner–Mindlin plates , 2010 .

[24]  António J.M. Ferreira,et al.  Thick Composite Beam Analysis Using a Global Meshless Approximation Based on Radial Basis Functions , 2003 .

[25]  Liviu Librescu,et al.  Analysis of symmetric cross-ply laminated elastic plates using a higher-order theory. II - Buckling and free vibration , 1988 .

[26]  Guirong Liu,et al.  A point interpolation meshless method based on radial basis functions , 2002 .

[28]  K. M. Liew,et al.  Mesh-free radial basis function method for buckling analysis of non-uniformly loaded arbitrarily shaped shear deformable plates , 2004 .

[29]  Guirong Liu,et al.  An element free Galerkin method for the free vibration analysis of composite laminates of complicated shape , 2003 .

[30]  António J.M. Ferreira,et al.  Analysis of Composite Plates Using a Layerwise Theory and Multiquadrics Discretization , 2005 .

[31]  J. N. Reddy,et al.  A comparison of closed-form and finite-element solutions of thick laminated anisotropic rectangular plates , 1981 .

[32]  Holger Wendland,et al.  Error Estimates for Interpolation by Compactly Supported Radial Basis Functions of Minimal Degree , 1998 .

[33]  Guirong Liu,et al.  A LOCAL RADIAL POINT INTERPOLATION METHOD (LRPIM) FOR FREE VIBRATION ANALYSES OF 2-D SOLIDS , 2001 .

[34]  N. Pagano,et al.  Exact Solutions for Rectangular Bidirectional Composites and Sandwich Plates , 1970 .

[35]  V.B.C. Tan,et al.  Element free method for static and free vibration analysis of spatial thin shell structures , 2002 .

[36]  E. Kansa Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates , 1990 .

[37]  Ahmed K. Noor,et al.  Computational Models for Sandwich Panels and Shells , 1996 .

[38]  G. Kirchhoff,et al.  Über das Gleichgewicht und die Bewegung einer elastischen Scheibe. , 1850 .

[39]  Y. Hon,et al.  Geometrically Nonlinear Analysis of Reissner-Mindlin Plate by Meshless Computation , 2007 .

[40]  E. Carrera Developments, ideas, and evaluations based upon Reissner’s Mixed Variational Theorem in the modeling of multilayered plates and shells , 2001 .

[41]  Thin plate spline radial basis functions for vibration analysis of clamped laminated composite plates , 2010 .

[42]  Hidenori Murakami,et al.  Laminated Composite Plate Theory With Improved In-Plane Responses , 1986 .

[43]  Erasmo Carrera,et al.  Improved bending analysis of sandwich plates using a zig-zag function , 2009 .

[44]  J. Reddy A Simple Higher-Order Theory for Laminated Composite Plates , 1984 .

[45]  Liviu Librescu,et al.  Recent developments in the modeling and behavior of advanced sandwich constructions: a survey , 2000 .

[46]  Hung Nguyen-Xuan,et al.  An n‐sided polygonal edge‐based smoothed finite element method (nES‐FEM) for solid mechanics , 2010 .

[47]  Guirong Liu,et al.  On the optimal shape parameters of radial basis functions used for 2-D meshless methods , 2002 .

[48]  Kwok Fai Cheung,et al.  Multiquadric Solution for Shallow Water Equations , 1999 .

[49]  R. L. Hardy Multiquadric equations of topography and other irregular surfaces , 1971 .

[50]  Luciano Demasi,et al.  ∞3 Hierarchy plate theories for thick and thin composite plates: The generalized unified formulation , 2008 .

[51]  H. Nguyen-Xuan,et al.  An edge-based smoothed finite element method for visco-elastoplastic analyses of 2D solids using triangular mesh , 2009 .

[52]  António J.M. Ferreira,et al.  A formulation of the multiquadric radial basis function method for the analysis of laminated composite plates , 2003 .

[53]  E. Carrera,et al.  Zig-Zag and interlaminar equilibria effects in large deflection and postbuckling analysis of multilayered plates , 1997 .

[54]  Gregory E. Fasshauer,et al.  Computation of natural frequencies of shear deformable beams and plates by an RBF-pseudospectral method , 2006 .

[55]  E. Carrera Historical review of Zig-Zag theories for multilayered plates and shells , 2003 .

[56]  Qiusheng Li,et al.  Bending and buckling analysis of antisymmetric laminates using the moving least square differential quadrature method , 2004 .

[57]  K. Y. Dai,et al.  A mesh-free method for static and free vibration analysis of shear deformable laminated composite plates , 2004 .