Nanoindentation characterization on competing propagation between the transgranular and intergranular cracking of 316H steel under creep‐fatigue loading

[1]  Weixin Xu,et al.  Fluid-induced vibration evolution mechanism of multiphase free sink vortex and the multi-source vibration sensing method , 2023, Mechanical Systems and Signal Processing.

[2]  Li Lin,et al.  Multiphase coupling transport evolution mechanism of the free sink vortex , 2023, Acta Physica Sinica.

[3]  Zengliang Gao,et al.  Nanoindentation characterization on the temperature-dependent fracture mechanism of Chinese 316H austenitic stainless steel under creep-fatigue interaction , 2022, Materials Characterization.

[4]  Zengliang Gao,et al.  Understanding the relation between creep-fatigue fracture mechanisms and intergranular dislocation accommodation of a high chromium steel using nanoindentation characterization , 2022, International Journal of Fatigue.

[5]  B. Lyu,et al.  Effect of surface quality on hydrogen/helium irradiation behavior in tungsten , 2021, Nuclear Engineering and Technology.

[6]  Zengliang Gao,et al.  Nanoindentation Characterization of Creep-fatigue Interaction on Local Creep Behavior of P92 Steel Welded Joint , 2021, Chinese Journal of Mechanical Engineering.

[7]  Shenmin Zhang,et al.  High-temperature creep property and life prediction of aluminized AISI 321 stainless steel after annealing diffusion treatment , 2021 .

[8]  H. Jing,et al.  Characterizing microstructural evolution and low cycle fatigue behavior of 316H austenitic steel at high-temperatures , 2021 .

[9]  Zengliang Gao,et al.  The effects of tensile and compressive dwells on creep-fatigue behavior and fracture mechanism in welded joint of P92 steel , 2021, Materials Science and Engineering: A.

[10]  J. Moverare,et al.  Microstructural evolution during high temperature dwell-fatigue of austenitic stainless steels , 2021 .

[11]  Zengliang Gao,et al.  On the microstructural evolution and room‐temperature creep behaviour of 9%Cr steel weld joint under prior creep–fatigue interaction , 2020 .

[12]  H. Jing,et al.  Analysis on stress‐strain behavior and life prediction of P92 steel under creep‐fatigue interaction conditions , 2020 .

[13]  Xiaowei Wang,et al.  Remaining creep properties and fracture behaviour of P92 steel welded joint under prior low cycle fatigue loading , 2020 .

[14]  Zengliang Gao,et al.  Nanoindentation investigation on the creep behavior of P92 steel weld joint after creep-fatigue loading , 2020 .

[15]  Taihua Zhang,et al.  Nanoindentation size effect on stochastic behavior of incipient plasticity in a LiTaO3 single crystal , 2020 .

[16]  A. Nagesha,et al.  Thermal cycling effects on the creep-fatigue interaction in type 316LN austenitic stainless steel weld joint , 2019 .

[17]  T. Siegmund,et al.  Nanoindentation based properties of Inconel 718 at elevated temperatures: A comparison of conventional versus additively manufactured samples , 2019, International Journal of Plasticity.

[18]  Wei Zhang,et al.  Evaluation of the effect of various prior creep-fatigue interaction damages on subsequent tensile and creep properties of 9%Cr steel , 2019, International Journal of Fatigue.

[19]  Y. Ma,et al.  Nanoindentation Investigation on the Size-Dependent Creep Behavior in a Zr-Cu-Ag-Al Bulk Metallic Glass , 2019, Metals.

[20]  Jae-Hyuk Eoh,et al.  Elevated temperature design and integrity evaluation of a large-scale sodium test facility, STELLA-2 , 2019, Nuclear Engineering and Design.

[21]  R. Pippan,et al.  Anneal hardening and elevated temperature strain rate sensitivity of nanostructured metals: Their relation to intergranular dislocation accommodation , 2019, Acta Materialia.

[22]  Wei Zhang,et al.  A New Empirical Life Prediction Model for 9–12%Cr Steels under Low Cycle Fatigue and Creep Fatigue Interaction Loadings , 2019, Metals.

[23]  R. Pippan,et al.  Transition from thermally assisted to mechanically driven boundary migration and related apparent activation energies , 2018, Scripta Materialia.

[24]  M. Wahab,et al.  Low cycle fatigue and creep fatigue interaction behavior of 9Cr-0.5Mo-1.8W-V-Nb heat-resistant steel at high temperature , 2018, Journal of Nuclear Materials.

[25]  A. Mehmanparast,et al.  The influence of inelastic pre-straining on fracture toughness behaviour of Type 316H stainless steel , 2017 .

[26]  Shun-Peng Zhu,et al.  A modified strain energy density exhaustion model for creep–fatigue life prediction , 2016 .

[27]  Y. Ma,et al.  Nanoindentation study on the characteristic of shear transformation zone volume in metallic glassy films , 2015 .

[28]  G. Peng,et al.  Loading rate effect on the creep behavior of metallic glassy films and its correlation with the shear transformation zone , 2015 .

[29]  D. H. Wen,et al.  Nanoindentation creep behavior in a CoCrFeCuNi high-entropy alloy film with two different structure states , 2015 .

[30]  A. Mehmanparast Prediction of creep crack growth behaviour in 316H stainless steel for a range of specimen geometries , 2014 .

[31]  Yun‐Jae Kim,et al.  Creep failure simulations of 316H at 550 °C: Part II – Effects of specimen geometry and loading mode , 2013 .

[32]  Yun‐Jae Kim,et al.  Creep failure simulations of 316H at 550 °C: Part I – A method and validation , 2011 .

[33]  D. Smith,et al.  Microstructural sensitivity of 316H austenitic stainless steel: Residual stress relaxation and grain boundary fracture , 2010 .

[34]  Indrajit Charit,et al.  Structural materials for Gen-IV nuclear reactors: Challenges and opportunities , 2008 .

[35]  K. Nikbin,et al.  Creep crack growth simulations in 316H stainless steel , 2008 .

[36]  C. Jang,et al.  Low cycle fatigue behaviors of type 316LN austenitic stainless steel in 310 °C deaerated water–fatigue life and dislocation structure development , 2008 .

[37]  R. Skelton,et al.  Creep – fatigue damage accumulation and interaction diagram based on metallographic interpretation of mechanisms , 2008 .

[38]  J. G. Sevillano,et al.  Critical examination of strain-rate sensitivity measurement by nanoindentation methods: Application to severely deformed niobium , 2008 .

[39]  D. W. Dean,et al.  Creep crack growth behaviour of Type 316H steels and proposed modifications to standard testing and analysis methods , 2007 .

[40]  Sayeed Hossain,et al.  Application of quenching to create highly triaxial residual stresses in type 316H stainless steels , 2006 .

[41]  K. T. Ramesh,et al.  Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals , 2004 .

[42]  D. Stone,et al.  Nanoindentation and the indentation size effect: Kinetics of deformation and strain gradient plasticity , 2003 .

[43]  Arai,et al.  CONTINUOUS SEM OBSERVATIONS OF CREEP‐FATIGUE DAMAGE PROCESSES , 2002 .

[44]  W. J. Plumbridge,et al.  Uprating and life assessment under fatigue-creep conditions , 1994 .

[45]  R. M. Hooper,et al.  The mechanisms of indentation creep , 1991 .

[46]  R. Hales,et al.  A QUANTITATIVE METALLOGRAPHIC ASSESSMENT OF STRUCTURAL DEGRADATION OF TYPE 316 STAINLESS STEEL DURING CREEP‐FATIGUE , 1980 .

[47]  H. Gleiter,et al.  The annealing of dislocations in high-angle grain boundaries , 1974 .

[48]  O. Sherby,et al.  Prediction of activation energies for creep and self-diffusion from hot hardness data , 1971 .

[49]  Oleg D. Sherby,et al.  Mechanical behavior of crystalline solids at elevated temperature , 1968 .

[50]  D. Tabor A simple theory of static and dynamic hardness , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.