Variational Inference with Hamiltonian Monte Carlo

Variational inference lies at the core of many state-of-the-art algorithms. To improve the approximation of the posterior beyond parametric families, it was proposed to include MCMC steps into the variational lower bound. In this work we explore this idea using steps of the Hamiltonian Monte Carlo (HMC) algorithm, an efficient MCMC method. In particular, we incorporate the acceptance step of the HMC algorithm, guaranteeing asymptotic convergence to the true posterior. Additionally, we introduce some extensions to the HMC algorithm geared towards faster convergence. The theoretical advantages of these modifications are reflected by performance improvements in our experimental results.

[1]  A. Kennedy,et al.  Hybrid Monte Carlo , 1988 .

[2]  A. Horowitz A generalized guided Monte Carlo algorithm , 1991 .

[3]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[4]  Michael I. Jordan,et al.  An Introduction to Variational Methods for Graphical Models , 1999, Machine-mediated learning.

[5]  J. Rosenthal,et al.  General state space Markov chains and MCMC algorithms , 2004, math/0404033.

[6]  Ruslan Salakhutdinov,et al.  On the quantitative analysis of deep belief networks , 2008, ICML '08.

[7]  Razvan Pascanu,et al.  Theano: A CPU and GPU Math Compiler in Python , 2010, SciPy.

[8]  Radford M. Neal MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.

[9]  M. Girolami,et al.  Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[10]  Nitish Srivastava,et al.  Improving neural networks by preventing co-adaptation of feature detectors , 2012, ArXiv.

[11]  Razvan Pascanu,et al.  Theano: new features and speed improvements , 2012, ArXiv.

[12]  Chong Wang,et al.  Stochastic variational inference , 2012, J. Mach. Learn. Res..

[13]  Diederik P. Kingma,et al.  Stochastic Gradient VB and the Variational Auto-Encoder , 2013 .

[14]  Daan Wierstra,et al.  Stochastic Backpropagation and Approximate Inference in Deep Generative Models , 2014, ICML.

[15]  M. Betancourt,et al.  The Geometric Foundations of Hamiltonian Monte Carlo , 2014, 1410.5110.

[16]  Shakir Mohamed,et al.  Variational Inference with Normalizing Flows , 2015, ICML.

[17]  Max Welling,et al.  Markov Chain Monte Carlo and Variational Inference: Bridging the Gap , 2014, ICML.

[18]  Alex Graves,et al.  DRAW: A Recurrent Neural Network For Image Generation , 2015, ICML.

[19]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.