State of health estimation for lithium ion batteries based on an equivalent-hydraulic model: An iron phosphate application

Abstract A two-step approach for state-of-health (SOH) estimation of a lithium-ion (Li-ion) battery is developed. In the first step, state-of-charge (SOC) estimation is performed by a constrained extended Kalman filter (EKF) based on the so-called equivalent-hydraulic model. The latter model allows to characterize the internal battery state and main physical parameters while being suitable for on-line computation. The internal battery states are further exploited in the second step of the approach to obtain parameter-based SOH indicators that characterize the long term evolution of the diffusion and charge transfer processes associated to aging. Capacity and power fade indicators are determined by using notably an instrumental variable method in order to obtain unbiased parameter estimates in the presence of heteroscedastic colored noise. The methodology is validated on both simulation and experimental data for a lithium iron phosphate (LFP) half battery cell. This also provides insight on the properties of the LFP electrodes.

[1]  Karen E. Thomas-Alyea Modeling Resistive-Reactant and Phase-Change Materials in Battery Electrodes , 2008 .

[2]  P. Pisu,et al.  Nonlinear Adaptive Observer for a Lithium-Ion Battery Cell Based on Coupled Electrochemical–Thermal Model , 2015 .

[3]  T. Jacobsen,et al.  Diffusion impedance in planar, cylindrical and spherical symmetry , 1995 .

[4]  Wolfgang Dreyer,et al.  The thermodynamic origin of hysteresis in insertion batteries. , 2010, Nature materials.

[5]  D. Sauer,et al.  Calendar and cycle life study of Li(NiMnCo)O2-based 18650 lithium-ion batteries , 2014 .

[6]  M. Safari,et al.  Mathematical Modeling of Lithium Iron Phosphate Electrode: Galvanostatic Charge/Discharge and Path Dependence , 2011 .

[7]  Christopher D. Rahn,et al.  Model based identification of aging parameters in lithium ion batteries , 2013 .

[8]  Giorgio Rizzoni,et al.  Design and parametrization analysis of a reduced-order electrochemical model of graphite/LiFePO4 cells for SOC/SOH estimation , 2013 .

[9]  Richard D. Braatz,et al.  Parameter Estimation and Capacity Fade Analysis of Lithium-Ion Batteries Using Reformulated Models , 2011 .

[10]  M. Doyle,et al.  Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell , 1993 .

[11]  M. Krstić,et al.  Adaptive Partial Differential Equation Observer for Battery State-of-Charge/State-of-Health Estimation Via an Electrochemical Model , 2014 .

[12]  Taeyoung Han,et al.  Full-Range Simulation of a Commercial LiFePO4 Electrode Accounting for Bulk and Surface Effects: A Comparative Analysis , 2014 .

[13]  Siamak Farhad,et al.  Simplified Electrochemical Multi-Particle Model for LiFePO4 Cathodes in Lithium-Ion Batteries , 2015 .

[14]  Delphine Riu,et al.  A review on lithium-ion battery ageing mechanisms and estimations for automotive applications , 2013 .

[15]  Peter C. Young,et al.  Recursive Estimation and Time-Series Analysis: An Introduction , 1984 .

[16]  V. Subramanian,et al.  Towards real-time (milliseconds) parameter estimation of lithium-ion batteries using reformulated physics-based models , 2008 .

[17]  Pallab Barai,et al.  Mechano-Electrochemical Model for Acoustic Emission Characterization in Intercalation Electrodes , 2014 .

[18]  Jianqiu Li,et al.  A review on the key issues for lithium-ion battery management in electric vehicles , 2013 .

[19]  H. Fathy,et al.  Reduction of an Electrochemistry-Based Li-Ion Battery Model via Quasi-Linearization and Padé Approximation , 2011 .

[20]  Jake Christensen,et al.  Modeling Diffusion-Induced Stress in Li-Ion Cells with Porous Electrodes , 2010 .

[21]  I. Villarreal,et al.  Critical review of state of health estimation methods of Li-ion batteries for real applications , 2016 .

[22]  Chaoyang Wang,et al.  Control oriented 1D electrochemical model of lithium ion battery , 2007 .

[23]  Huazhen Fang,et al.  Improved adaptive state-of-charge estimation for batteries using a multi-model approach , 2014 .

[24]  Dong Zhang,et al.  Remaining useful life estimation of Lithium-ion batteries based on thermal dynamics , 2017, 2017 American Control Conference (ACC).

[25]  Michel Kinnaert,et al.  SOC and SOH estimation for Li-ion battery based on an equivalent hydraulic model. Part II: SOH power fade estimation , 2016, 2016 American Control Conference (ACC).

[26]  Pierluigi Pisu,et al.  Combined estimation of State-of-Charge and State-of-Health of Li-ion battery cells using SMO on electrochemical model , 2014, 2014 13th International Workshop on Variable Structure Systems (VSS).

[27]  Steven Dargaville,et al.  Predicting Active Material Utilization in LiFePO4 Electrodes Using a Multiscale Mathematical Model , 2010 .

[28]  Jay Lee,et al.  Review and recent advances in battery health monitoring and prognostics technologies for electric vehicle (EV) safety and mobility , 2014 .

[29]  Gregory L. Plett,et al.  Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 3. State and parameter estimation , 2004 .

[30]  Ralph E. White,et al.  Review of Models for Predicting the Cycling Performance of Lithium Ion Batteries , 2006 .

[31]  M. Safari,et al.  Multimodal Physics-Based Aging Model for Life Prediction of Li-Ion Batteries , 2009 .

[32]  Venkat Srinivasan,et al.  Existence of path-dependence in the LiFePO4 electrode , 2006 .

[33]  M. Wohlfahrt‐Mehrens,et al.  Ageing mechanisms in lithium-ion batteries , 2005 .

[34]  Huazhen Fang,et al.  Adaptive Estimation of the State of Charge for Lithium-Ion Batteries: Nonlinear Geometric Observer Approach , 2015, IEEE Transactions on Control Systems Technology.

[35]  James F. Manwell,et al.  LEAD-ACID-BATTERY STORAGE MODEL FOR HYBRID ENERGY-SYSTEMS , 1993 .

[36]  Pedro E. Arce,et al.  Discharge Model for LiFePO4 Accounting for the Solid Solution Range , 2008 .

[37]  Daniel A. Cogswell,et al.  Coherency strain and the kinetics of phase separation in LiFePO4 nanoparticles. , 2011, ACS nano.

[38]  Mehrdad Saif,et al.  Online state and parameter estimation of the Li-ion battery in a Bayesian framework , 2013, 2013 American Control Conference.

[39]  John Newman,et al.  Effect of Anode Film Resistance on the Charge/Discharge Capacity of a Lithium-Ion Battery , 2003 .

[40]  Long Cai,et al.  Capacity Fade Model for Spinel LiMn2O4 Electrode , 2013 .

[41]  Jason B. Siegel,et al.  A lumped-parameter electro-thermal model for cylindrical batteries , 2014 .

[42]  Hugues Garnier,et al.  Direct continuous-time approaches to system identification. Overview and benefits for practical applications , 2015, Eur. J. Control.

[43]  A. Stefanopoulou,et al.  Lithium-Ion Battery State of Charge and Critical Surface Charge Estimation Using an Electrochemical Model-Based Extended Kalman Filter , 2010 .

[44]  Ralph E. White,et al.  Capacity Fade Mechanisms and Side Reactions in Lithium‐Ion Batteries , 1998 .

[45]  Christian Fleischer,et al.  Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles , 2014 .

[46]  Mohammadhosein Safari,et al.  Mesoscopic modeling of Li insertion in phase-separating electrode materials: application to lithium iron phosphate. , 2014, Physical chemistry chemical physics : PCCP.

[47]  James Marco,et al.  Characterising Lithium-Ion Battery Degradation through the Identification and Tracking of Electrochemical Battery Model Parameters , 2016 .

[48]  Mattia Ricco,et al.  Overview of Lithium-Ion battery modeling methods for state-of-charge estimation in electrical vehicles , 2018 .

[49]  Chris Manzie,et al.  PDE battery model simplification for SOC and SOH estimator design , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[50]  Daniel A. Cogswell,et al.  Suppression of phase separation in LiFePO₄ nanoparticles during battery discharge. , 2011, Nano letters.

[51]  Ralph E. White,et al.  Parameter Estimation and Life Modeling of Lithium-Ion Cells , 2008 .

[52]  Charles Delacourt,et al.  Mathematical Modeling of Commercial LiFePO4 Electrodes Based on Variable Solid-State Diffusivity , 2011 .

[53]  L. Guzzella,et al.  Model-based distinction and quantification of capacity loss and rate capability fade in Li-ion batteries , 2010 .

[54]  Michel Kinnaert,et al.  SOC and SOH estimation for Li-ion batteries based on an equivalent hydraulic model. Part I: SOC and surface concentration estimation , 2016, 2016 American Control Conference (ACC).

[55]  P. Young,et al.  Refined instrumental variable methods of recursive time-series analysis Part III. Extensions , 1980 .

[56]  Rolf Findeisen,et al.  Electrochemical Model Based Observer Design for a Lithium-Ion Battery , 2013, IEEE Transactions on Control Systems Technology.

[57]  Peter C. Young,et al.  Instrumental variable methods for identifying partial differential equation models of distributed parameter systems , 2012 .

[58]  M. Doyle,et al.  Simulation and Optimization of the Dual Lithium Ion Insertion Cell , 1994 .

[59]  Simona Onori,et al.  Electrochemical Model-Based State of Charge and Capacity Estimation for a Composite Electrode Lithium-Ion Battery , 2016, IEEE Transactions on Control Systems Technology.

[60]  Jasim Ahmed,et al.  Algorithms for Advanced Battery-Management Systems , 2010, IEEE Control Systems.

[61]  Pedro E. Arce,et al.  A Discharge Model for Phase Transformation Electrodes: Formulation, Experimental Validation, and Analysis , 2007 .

[62]  Ruben H. Milocco,et al.  Generic dynamic model of rechargeable batteries , 2014 .

[63]  Mohammadhosein Safari,et al.  Modeling of a Commercial Graphite/LiFePO4 Cell , 2011 .

[64]  Ralph E. White,et al.  Mathematical modeling of the capacity fade of Li-ion cells , 2003 .

[65]  Xiaosong Hu,et al.  A comparative study of equivalent circuit models for Li-ion batteries , 2012 .

[66]  Chao Lyu,et al.  Non-Destructive Analysis of Degradation Mechanisms in Cycle-Aged Graphite/LiCoO 2 Batteries , 2014 .

[67]  Huazhen Fang,et al.  State of charge estimation for lithium-ion batteries: An adaptive approach , 2014 .

[68]  Yi-Jun He,et al.  State of health estimation of lithium‐ion batteries: A multiscale Gaussian process regression modeling approach , 2015 .

[69]  Beshah Ayalew,et al.  A Diagnostic Scheme for Detection, Isolation and Estimation of Electrochemical Faults in Lithium-Ion Cells , 2015 .

[70]  D. Simon Kalman filtering with state constraints: a survey of linear and nonlinear algorithms , 2010 .

[71]  Mohammadhosein Safari,et al.  Analysis of lithium deinsertion/insertion in LiyFePO4 with a simple mathematical model , 2010 .

[72]  Danijel Pavković,et al.  Dual EKF-based State and Parameter Estimator for a LiFePO4 Battery Cell , 2017 .

[73]  Venkat Srinivasan,et al.  Discharge Model for the Lithium Iron-Phosphate Electrode , 2004 .

[74]  Lei Zhang,et al.  Co-estimation of state-of-charge, capacity and resistance for lithium-ion batteries based on a high-fidelity electrochemical model , 2016 .

[75]  Ralph E. White,et al.  State of Charge and Loss of Active Material Estimation of a Lithium Ion Cell under Low Earth Orbit Condition Using Kalman Filtering Approaches , 2012 .

[76]  V. Subramanian,et al.  Mathematical Model Reformulation for Lithium-Ion Battery Simulations: Galvanostatic Boundary Conditions , 2009 .

[77]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .