Quantum-optical state engineering up to the two-photon level

Tailoring of arbitrary single-mode states of travelling light up to the two-photon level is proposed and demonstrated. The desired state is remotely prepared in the signal channel of spontaneous parametric down-conversion by means of conditional measurements on the idler channel.

[1]  Hong,et al.  Measurement of subpicosecond time intervals between two photons by interference. , 1987, Physical review letters.

[2]  T. Ralph,et al.  Quantum-state engineering with continuous-variable postselection , 2005, quant-ph/0512094.

[3]  F. Illuminati,et al.  Multiphoton quantum optics and quantum state engineering , 2006, quant-ph/0701050.

[4]  A. Lvovsky,et al.  Quantum state reconstruction of the single-photon Fock state. , 2001, Physical Review Letters.

[5]  M. Bellini,et al.  Quantum-to-Classical Transition with Single-Photon-Added Coherent States of Light , 2004, Science.

[6]  F. Illuminati,et al.  Optimal estimation of losses at the ultimate quantum limit with non-Gaussian states , 2008, 0807.3958.

[7]  Nicolas J. Cerf,et al.  Conditional generation of arbitrary single-mode quantum states of light by repeated photon subtractions , 2005 .

[8]  Erik Lucero,et al.  Synthesizing arbitrary quantum states in a superconducting resonator , 2009, Nature.

[9]  S. A. Babichev,et al.  Instant single-photon Fock state tomography. , 2009, Optics letters.

[10]  L. Knoll,et al.  GENERATION OF ARBITRARY QUANTUM STATES OF TRAVELING FIELDS , 1999 .

[11]  E. Knill,et al.  Diluted maximum-likelihood algorithm for quantum tomography , 2006, quant-ph/0611244.

[12]  A I Lvovsky,et al.  Quantum-optical catalysis: generating nonclassical states of light by means of linear optics. , 2002, Physical review letters.

[13]  A. I. Lvovsky,et al.  Iterative maximum-likelihood reconstruction in quantum homodyne tomography , 2003, quant-ph/0311097.

[14]  C. H. Bennett,et al.  Remote state preparation. , 2000, Physical review letters.

[15]  Andrew G. White,et al.  Nonmaximally Entangled States: Production, Characterization, and Utilization , 1999, quant-ph/9908081.

[16]  T. Ralph,et al.  Demonstration of an all-optical quantum controlled-NOT gate , 2003, Nature.

[17]  Philippe Grangier,et al.  Generation of optical ‘Schrödinger cats’ from photon number states , 2007, Nature.

[18]  Aephraim M. Steinberg,et al.  Quantum state preparation and conditional coherence. , 2002, Physical review letters.

[19]  Philippe Grangier,et al.  Quantum homodyne tomography of a two-photon Fock state. , 2006, Physical review letters.

[20]  S. A. Babichev,et al.  Quantum scissors: Teleportation of single-mode optical states by means of a nonlocal single photon , 2002, quant-ph/0208066.

[21]  P. Knight,et al.  Quantum superpositions and Schrödinger cat states in quantum optics , 1997 .

[22]  S. Deleglise,et al.  Reconstruction of non-classical cavity field states with snapshots of their decoherence , 2008, Nature.

[23]  C Langer,et al.  Experimental demonstration of a technique to generate arbitrary quantum superposition states of a harmonically bound spin-1/2 particle. , 2003, Physical review letters.

[24]  G. Milburn,et al.  Linear optical quantum computing with photonic qubits , 2005, quant-ph/0512071.

[25]  A. Lvovsky,et al.  Continuous-variable optical quantum-state tomography , 2009 .

[26]  Julien Laurat,et al.  Generating Optical Schrödinger Kittens for Quantum Information Processing , 2006, Science.

[27]  H. Lo Classical-communication cost in distributed quantum-information processing: A generalization of quantum-communication complexity , 1999, quant-ph/9912009.

[28]  Law,et al.  Arbitrary control of a quantum electromagnetic field. , 1996, Physical review letters.