A BGK-Type Flux-Vector Splitting Scheme for the Ultrarelativistic Euler Equations

A gas-kinetic solver is developed for the ultrarelativistic Euler equations. The scheme is based on the direct splitting of the flux function of the Euler equations with inclusion of ``particle'' collisions in the transport process. Consequently, the artificial dissipation in the new scheme is much reduced in comparison with the usual kinetic flux-vector splitting (KFVS) schemes which are based on the free particle transport at the cell interfaces in the gas evolution stage. Although in a usual KFVS scheme the free particle transport gives robust solutions, it gives a smeared solution at the contact discontinuities. The new BGK-type KFVS scheme solves this problem and gives robust and reliable solutions as well as good resolution at the contact discontinuity. In contrast to the classical kinetic theory, we have only a finite domain of dependence due to the structure of the light cone. The scheme is naturally multidimensional and is extended to the two-dimensional case in a usual dimensionally split manner; that is, the formulae for the fluxes can be used along each coordinate direction. The high-order resolution of the scheme is achieved by using a MUSCL-type initial reconstruction. In the numerical case studies the results obtained from the BGK-type KFVS schemes are compared with the exact Riemann solution, KFVS schemes, upwind schemes, and central schemes.

[1]  S. R. de Groot,et al.  Relativistic kinetic theory , 1974 .

[2]  Antony Jameson,et al.  Gas-kinetic finite volume methods , 1995 .

[3]  Kun Xu,et al.  Gas-Kinetic Theory-Based Flux Splitting Method for Ideal Magnetohydrodynamics , 1999 .

[4]  S. M. Deshpande,et al.  A second-order accurate kinetic-theory-based method for inviscid compressible flows , 1986 .

[5]  Kun Xu,et al.  Gas-kinetic schemes for unsteady compressible flow simulations , 1998 .

[6]  P. Raviart,et al.  Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.

[7]  S. M. Deshpande,et al.  New Developments in Kinetic Schemes , 1998 .

[8]  Kun Xu,et al.  Dissipative mechanism in Godunov‐type schemes , 2001 .

[9]  S. Osher,et al.  Upwind difference schemes for hyperbolic systems of conservation laws , 1982 .

[10]  F. Jüttner Das Maxwellsche Gesetz der Geschwindigkeitsverteilung in der Relativtheorie , 1911 .

[11]  J. C. Mandal,et al.  KINETIC FLUX VECTOR SPLITTING FOR EULER EQUATIONS , 1994 .

[12]  B. Perthame Second-order Boltzmann schemes for compressible Euler equations in one and two space dimensions , 1992 .

[13]  P. Lax,et al.  On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .

[14]  R. LeVeque Approximate Riemann Solvers , 1992 .

[15]  E. Müller,et al.  Numerical Hydrodynamics in Special Relativity , 1999, Living reviews in relativity.

[16]  A. Jameson,et al.  Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes , 1981 .

[17]  Antony Jameson,et al.  Gas-kinetic finite volume methods, flux-vector splitting, and artificial diffusion , 1995 .

[18]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[19]  W. V. Leeuwen,et al.  Relativistic Kinetic Theory: Principles and Applications , 1980 .

[20]  K. Xu,et al.  Gas-kinetic schemes for the compressible Euler equations: Positivity-preserving analysis , 1999 .

[21]  Gerald Warnecke,et al.  Second-order accurate kinetic schemes for the ultra-relativistic Euler equations , 2003 .

[22]  Shamsul Qamar,et al.  Kinetic schemes for the relativistic gas dynamics , 2004, Numerische Mathematik.

[23]  A. Königl Relativistic gasdynamics in two dimensions , 1980 .

[24]  F. Jüttner Die relativistische Quantentheorie des idealen Gases , 1928 .

[25]  M. Aloy,et al.  High-Resolution Three-dimensional Simulations of Relativistic Jets , 1999, astro-ph/9906428.

[26]  I. Bohachevsky,et al.  Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics , 1959 .

[27]  Kun Xu,et al.  Entropy analysis of kinetic flux vector splitting schemes for the compressible Euler equations , 2001 .

[28]  M. J. Marchant,et al.  An upwind kinetic flux vector splitting method on general mesh topologies , 1994 .

[29]  R. D. Richtmyer,et al.  A Method for the Numerical Calculation of Hydrodynamic Shocks , 1950 .