A BGK-Type Flux-Vector Splitting Scheme for the Ultrarelativistic Euler Equations
暂无分享,去创建一个
Shamsul Qamar | Gerald Warnecke | Matthias Kunik | G. Warnecke | M. Kunik | S. Qamar | Matthias Kunik | Shamsul Qamar
[1] S. R. de Groot,et al. Relativistic kinetic theory , 1974 .
[2] Antony Jameson,et al. Gas-kinetic finite volume methods , 1995 .
[3] Kun Xu,et al. Gas-Kinetic Theory-Based Flux Splitting Method for Ideal Magnetohydrodynamics , 1999 .
[4] S. M. Deshpande,et al. A second-order accurate kinetic-theory-based method for inviscid compressible flows , 1986 .
[5] Kun Xu,et al. Gas-kinetic schemes for unsteady compressible flow simulations , 1998 .
[6] P. Raviart,et al. Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.
[7] S. M. Deshpande,et al. New Developments in Kinetic Schemes , 1998 .
[8] Kun Xu,et al. Dissipative mechanism in Godunov‐type schemes , 2001 .
[9] S. Osher,et al. Upwind difference schemes for hyperbolic systems of conservation laws , 1982 .
[10] F. Jüttner. Das Maxwellsche Gesetz der Geschwindigkeitsverteilung in der Relativtheorie , 1911 .
[11] J. C. Mandal,et al. KINETIC FLUX VECTOR SPLITTING FOR EULER EQUATIONS , 1994 .
[12] B. Perthame. Second-order Boltzmann schemes for compressible Euler equations in one and two space dimensions , 1992 .
[13] P. Lax,et al. On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .
[14] R. LeVeque. Approximate Riemann Solvers , 1992 .
[15] E. Müller,et al. Numerical Hydrodynamics in Special Relativity , 1999, Living reviews in relativity.
[16] A. Jameson,et al. Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes , 1981 .
[17] Antony Jameson,et al. Gas-kinetic finite volume methods, flux-vector splitting, and artificial diffusion , 1995 .
[18] P. Roe. Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .
[19] W. V. Leeuwen,et al. Relativistic Kinetic Theory: Principles and Applications , 1980 .
[20] K. Xu,et al. Gas-kinetic schemes for the compressible Euler equations: Positivity-preserving analysis , 1999 .
[21] Gerald Warnecke,et al. Second-order accurate kinetic schemes for the ultra-relativistic Euler equations , 2003 .
[22] Shamsul Qamar,et al. Kinetic schemes for the relativistic gas dynamics , 2004, Numerische Mathematik.
[23] A. Königl. Relativistic gasdynamics in two dimensions , 1980 .
[24] F. Jüttner. Die relativistische Quantentheorie des idealen Gases , 1928 .
[25] M. Aloy,et al. High-Resolution Three-dimensional Simulations of Relativistic Jets , 1999, astro-ph/9906428.
[26] I. Bohachevsky,et al. Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics , 1959 .
[27] Kun Xu,et al. Entropy analysis of kinetic flux vector splitting schemes for the compressible Euler equations , 2001 .
[28] M. J. Marchant,et al. An upwind kinetic flux vector splitting method on general mesh topologies , 1994 .
[29] R. D. Richtmyer,et al. A Method for the Numerical Calculation of Hydrodynamic Shocks , 1950 .