A “Fourier Transform” for Multiplicative Functions on Non-Crossing Partitions

We describe the structure of the group of normalized multiplicative functions on lattices of non-crossing partitions. As an application, we give a combinatorial proof of a theorem of D. Voiculescu concerning the multiplication of free random variables

[1]  A. Nica,et al.  On the multiplication of free N-tuples of noncommutative random variables , 1996, funct-an/9604011.

[2]  G. Rota On the foundations of combinatorial theory I. Theory of Möbius Functions , 1964 .

[3]  G. Rota,et al.  Finite operator calculus , 1975 .

[4]  Roland Speicher,et al.  Combinatorial Theory of the Free Product With Amalgamation and Operator-Valued Free Probability Theory , 1998 .

[5]  I. P. Goulden,et al.  Symmetrical Functions and Macdonald′s Result for Top Connexion Coefficients in the Symmetrical Group , 1994 .

[6]  Alexandru Nica,et al.  Free random variables , 1992 .

[7]  D. Voiculescu Addition of certain non-commuting random variables , 1986 .

[8]  D. Voiculescu Symmetries of some reduced free product C*-algebras , 1985 .

[9]  Philippe Biane,et al.  Minimal Factorizations of a Cycle and Central Multiplicative Functions on the Infinite Symmetric Group , 1996, J. Comb. Theory, Ser. A.

[10]  R. Speicher Multiplicative functions on the lattice of non-crossing partitions and free convolution , 1994 .

[11]  J. Howie COMBINATORICS ON WORDS (Encyclopedia of Mathematics and Its Applications, 17) , 1984 .

[12]  David M. Jackson Some combinatorial problems associated with products of conjugacy classes of the symmetric group , 1988, J. Comb. Theory, Ser. A.

[13]  Germain Kreweras,et al.  Sur les partitions non croisees d'un cycle , 1972, Discret. Math..

[14]  Rodica Simion,et al.  On the structure of the lattice of noncrossing partitions , 1991, Discret. Math..

[15]  Philippe Biane,et al.  Some properties of crossings and partitions , 1997, Discret. Math..

[16]  R. Stanley,et al.  On the foundations of combinatorial theory. VI. The idea of generating function , 1972 .