Cellular and Molecular Aspects of Dyssynchrony and Resynchronization.

[1]  J. Brugada,et al.  Plasma tissue inhibitor of matrix metalloproteinase-1 a predictor of long-term mortality in patients treated with cardiac resynchronization therapy. , 2016, Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology.

[2]  A. Terzic,et al.  Cardiac resynchronization therapy induces adaptive metabolic transitions in the metabolomic profile of heart failure. , 2015, Journal of cardiac failure.

[3]  S. Franklin,et al.  Metabolic Remodeling in Moderate Synchronous versus Dyssynchronous Pacing-Induced Heart Failure: Integrated Metabolomics and Proteomics Study , 2015, PloS one.

[4]  D. Kass,et al.  Cardiac resynchronization therapy restores sympathovagal balance in the failing heart by differential remodeling of cholinergic signaling. , 2015, Circulation research.

[5]  Jagmeet P. Singh,et al.  Biomarkers in electrophysiology: role in arrhythmias and resynchronization therapy , 2015, Journal of Interventional Cardiac Electrophysiology.

[6]  D. Kass,et al.  Glycoproteins identified from heart failure and treatment models , 2015, Proteomics.

[7]  S. Solomon,et al.  Plasma galectin-3 and heart failure outcomes in MADIT-CRT (multicenter automatic defibrillator implantation trial with cardiac resynchronization therapy). , 2014, Journal of cardiac failure.

[8]  K. Fatima,et al.  Recovery of myofilament function through reactivation of glycogen synthase kinase 3β (GSK-3β): mechanism for cardiac resynchronization therapy , 2014, Journal of Interventional Cardiac Electrophysiology.

[9]  P. Schwartz,et al.  Tumor necrosis factor-α predicts response to cardiac resynchronization therapy in patients with chronic heart failure. , 2014, Circulation journal : official journal of the Japanese Circulation Society.

[10]  Andrew D McCulloch,et al.  Timing and magnitude of systolic stretch affect myofilament activation and mechanical work. , 2014, American journal of physiology. Heart and circulatory physiology.

[11]  G. Paolisso,et al.  Functional role of miRNA in cardiac resynchronization therapy. , 2014, Pharmacogenomics.

[12]  Eric D. Carruth,et al.  Remodeling of the sarcomeric cytoskeleton in cardiac ventricular myocytes during heart failure and after cardiac resynchronization therapy. , 2014, Journal of molecular and cellular cardiology.

[13]  R. Fernandes,et al.  Circulating Endothelial Progenitor Cells as a Predictor of Response to Cardiac Resynchronization Therapy: The Missing Piece of the Puzzle? , 2014, Pacing and clinical electrophysiology : PACE.

[14]  L. Tenori,et al.  Metabolomic does not predict response to cardiac resynchronization therapy in patients with heart failure , 2014, Journal of cardiovascular medicine.

[15]  D. Kass,et al.  Desmin modifications associate with amyloid-like oligomers deposition in heart failure. , 2014, Cardiovascular research.

[16]  C. Redwood,et al.  New mechanisms and concepts for cardiac-resynchronization therapy. , 2014, The New England journal of medicine.

[17]  Andrew D McCulloch,et al.  Biomechanics of cardiac electromechanical coupling and mechanoelectric feedback. , 2014, Journal of biomechanical engineering.

[18]  G. Di Salvo,et al.  Effect of cardiac resynchronization therapy on cardiotrophin-1 circulating levels in patients with heart failure , 2014, Internal and Emergency Medicine.

[19]  D. Kass,et al.  Cardiac resynchronization sensitizes the sarcomere to calcium by reactivating GSK-3β. , 2014, The Journal of clinical investigation.

[20]  G. Paolisso,et al.  Circulating microRNA changes in heart failure patients treated with cardiac resynchronization therapy: responders vs. non‐responders , 2013, European journal of heart failure.

[21]  Igor R. Efimov,et al.  A Fully Implantable Pacemaker for the Mouse: From Battery to Wireless Power , 2013, PloS one.

[22]  D. Kass,et al.  Electromechanical Dyssynchrony and Resynchronization of the Failing Heart , 2013, Circulation research.

[23]  J. Brugada,et al.  Plasma tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) a powerful predictor of long term mortality in patients treated with cardiac resynchronization therapy , 2013 .

[24]  Yasmin L. Hashambhoy,et al.  Cardiac Resynchronization Therapy Improves Altered Na Channel Gating in Canine Model of Dyssynchronous Heart Failure , 2013, Circulation. Arrhythmia and electrophysiology.

[25]  T. Şahin,et al.  Neutrophil-to-lymphocyte ratio predicts response to cardiac resynchronization therapy , 2013, Medical science monitor : international medical journal of experimental and clinical research.

[26]  R. Neviere,et al.  Right ventricular pacing with mechanical dyssynchrony causes apoptosis interruptus and calcium mishandling. , 2013, The Canadian journal of cardiology.

[27]  D. Dutka,et al.  Radial Strain Delay Based on Segmental Timing and Strain Amplitude Predicts Left Ventricular Reverse Remodeling and Survival After Cardiac Resynchronization Therapy , 2013, Circulation. Cardiovascular imaging.

[28]  Jing Zhao,et al.  Novel insights into the pervasive role of M(3) muscarinic receptor in cardiac diseases. , 2013, Current drug targets.

[29]  M. Dorobanțu,et al.  Cardiac resynchronization therapy in patients with chronic heart failure is associated with anti-inflammatory and anti-remodeling effects. , 2013, Clinical biochemistry.

[30]  Mark A Hlatky,et al.  2012 ACCF/AHA/HRS focused update incorporated into the ACCF/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. , 2013, Circulation.

[31]  Jagmeet P. Singh,et al.  Left ventricular lead location and the risk of ventricular arrhythmias in the MADIT-CRT trial. , 2013, European heart journal.

[32]  A. Moss,et al.  Effect of cardiac resynchronization therapy on the risk of first and recurrent ventricular tachyarrhythmic events in MADIT-CRT. , 2012, Journal of the American College of Cardiology.

[33]  Jennifer E Van Eyk,et al.  Multiple Reaction Monitoring to Identify Site-Specific Troponin I Phosphorylated Residues in the Failing Human Heart , 2012, Circulation.

[34]  M. Link,et al.  2012 ACCF/AHA/HRS focused update of the 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. , 2012, Journal of the American College of Cardiology.

[35]  Raghav Venkataraman,et al.  Myofilament Ca Sensitization Increases Cytosolic Ca Binding Affinity, Alters Intracellular Ca Homeostasis, and Causes Pause-Dependent Ca-Triggered Arrhythmia , 2012, Circulation research.

[36]  F. Weinberger,et al.  Increased myofilament Ca2+ sensitivity and diastolic dysfunction as early consequences of Mybpc3 mutation in heterozygous knock-in mice , 2012, Journal of molecular and cellular cardiology.

[37]  Jeroen J. Bax,et al.  Effect of cardiac resynchronization therapy in patients without left intraventricular dyssynchrony. , 2012, European heart journal.

[38]  D. Kass,et al.  Subcellular Structures and Function of Myocytes Impaired During Heart Failure Are Restored by Cardiac Resynchronization Therapy , 2012, Circulation research.

[39]  S. Lai,et al.  Creatine kinase-mediated improvement of function in failing mouse hearts provides causal evidence the failing heart is energy starved. , 2012, The Journal of clinical investigation.

[40]  J. Cleland,et al.  Association of galectin‐3 and fibrosis markers with long‐term cardiovascular outcomes in patients with heart failure, left ventricular dysfunction, and dyssynchrony: insights from the CARE‐HF (Cardiac Resynchronization in Heart Failure) trial , 2012, European journal of heart failure.

[41]  Brian O'Rourke,et al.  Redox Regulation of Mitochondrial ATP Synthase: Implications for Cardiac Resynchronization Therapy , 2011, Circulation Research.

[42]  D. Kass,et al.  Gαs-Biased β2-Adrenergic Receptor Signaling from Restoring Synchronous Contraction in the Failing Heart , 2011, Science Translational Medicine.

[43]  Jose H. Flores-Arredondo,et al.  Cellular evidence of reverse cardiac remodeling induced by cardiac resynchronization therapy. , 2011, Congestive heart failure.

[44]  B. Kemp,et al.  Cardiac Sympathetic Reserve and Response to Cardiac Resynchronization Therapy , 2011, Circulation. Heart failure.

[45]  G. Dorn MicroRNAs in cardiac disease. , 2011, Translational research : the journal of laboratory and clinical medicine.

[46]  Jeroen J. Bax,et al.  Assessment of Systolic Dyssynchrony for Cardiac Resynchronization Therapy Is Clinically Useful , 2011, Circulation.

[47]  E. Foster,et al.  Assessment of Systolic Dyssynchrony for Cardiac Resynchronization Therapy Is Not Clinically Useful , 2011, Circulation.

[48]  G. Plank,et al.  Length-dependent tension in the failing heart and the efficacy of cardiac resynchronization therapy. , 2011, Cardiovascular research.

[49]  T. Arias,et al.  Cardiac resynchronization therapy-induced left ventricular reverse remodelling is associated with reduced plasma annexin A5. , 2010, Cardiovascular research.

[50]  Neema Jamshidi,et al.  Assessment of Metabolic Phenotypes in Patients with Non-ischemic Dilated Cardiomyopathy Undergoing Cardiac Resynchronization Therapy , 2010, Journal of cardiovascular translational research.

[51]  D. Kass,et al.  Rethinking Resynch: Exploring Mechanisms of Cardiac Resynchroniztion Beyond Wall Motion Control. , 2010, Drug discovery today. Disease mechanisms.

[52]  D. Tamborero,et al.  Plasma tissue inhibitor of matrix metalloproteinase-1 (TIMP-1): an independent predictor of poor response to cardiac resynchronization therapy , 2010, European journal of heart failure.

[53]  G. Salama,et al.  Effect of Right Ventricular Versus Biventricular Pacing on Electrical Remodeling in the Normal Heart , 2010, Circulation. Arrhythmia and electrophysiology.

[54]  D. Kass,et al.  Modulation of Mitochondrial Proteome and Improved Mitochondrial Function by Biventricular Pacing of Dyssynchronous Failing Hearts , 2010, Circulation. Cardiovascular genetics.

[55]  G. Aquaro,et al.  Severe mechanical dyssynchrony causes regional hibernation-like changes in pigs with nonischemic heart failure. , 2009, Journal of cardiac failure.

[56]  D. Kass Pathobiology of cardiac dyssynchrony and resynchronization. , 2009, Heart rhythm.

[57]  Brian O'Rourke,et al.  Electrophysiological Consequences of Dyssynchronous Heart Failure and Its Restoration by Resynchronization Therapy , 2009, Circulation.

[58]  D. Kass,et al.  Mechanisms of Enhanced &bgr;-Adrenergic Reserve From Cardiac Resynchronization Therapy , 2009, Circulation.

[59]  S. Markowitz,et al.  Relationship of Reverse Anatomical Remodeling and Ventricular Arrhythmias After Cardiac Resynchronization , 2009, Journal of cardiovascular electrophysiology.

[60]  J. Ornato,et al.  ACC/AHA/HRS 2008 Guidelines for device-based therapy of cardiac rhythm abnormalities. , 2008, Heart Rhythm.

[61]  Harlan M Krumholz,et al.  ACC/AHA/HRS 2008 Guidelines for Device-Based Therapy of Cardiac Rhythm Abnormalities: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the ACC/AHA/NASPE 2002 Guideline Update for Implantation of Cardiac Pacemaker , 2008, Circulation.

[62]  Jeroen J. Bax,et al.  Results of the Predictors of Response to CRT (PROSPECT) Trial , 2008, Circulation.

[63]  J. Gavira,et al.  Impact of collagen type I turnover on the long-term response to cardiac resynchronization therapy. , 2008, European heart journal.

[64]  D. Kass,et al.  Reversal of Global Apoptosis and Regional Stress Kinase Activation by Cardiac Resynchronization , 2008, Circulation.

[65]  W. Wijns,et al.  Endomyocardial upregulation of beta1 adrenoreceptor gene expression and myocardial contractile reserve following cardiac resynchronization therapy. , 2008, Journal of Cardiac Failure.

[66]  J. Blanc,et al.  Cardiac resynchronization therapy: "nonresponders" and "hyperresponders". , 2008, Heart rhythm.

[67]  W. Wijns,et al.  Myocardial gene expression in heart failure patients treated with cardiac resynchronization therapy responders versus nonresponders. , 2008, Journal of the American College of Cardiology.

[68]  Rong-Fong Shen,et al.  Preconditioning Results in S-Nitrosylation of Proteins Involved in Regulation of Mitochondrial Energetics and Calcium Transport , 2007, Circulation research.

[69]  G. Aquaro,et al.  Mismatch between uniform increase in cardiac glucose uptake and regional contractile dysfunction in pacing-induced heart failure. , 2007, American journal of physiology. Heart and circulatory physiology.

[70]  Jeroen J. Bax,et al.  Reverse ventricular remodelling after cardiac resynchronization therapy is associated with a reduction in serum tenascin‐C and plasma matrix metalloproteinase‐9 levels , 2007, European journal of heart failure.

[71]  Jeroen J. Bax,et al.  Left Ventricular Resynchronization Is Mandatory for Response to Cardiac Resynchronization Therapy: Analysis in Patients With Echocardiographic Evidence of Left Ventricular Dyssynchrony at Baseline , 2007, Circulation.

[72]  S. Viatchenko‐Karpinski,et al.  Chronic cardiac resynchronization therapy and reverse ventricular remodeling in a model of nonischemic cardiomyopathy. , 2007, Life sciences.

[73]  S. Iyengar,et al.  Effect of cardiac resynchronization therapy on myocardial gene expression in patients with nonischemic dilated cardiomyopathy. , 2007, Journal of cardiac failure.

[74]  M. Volpe,et al.  Cardiac resynchronization therapy increases plasma levels of the endogenous inotrope apelin , 2007, European journal of heart failure.

[75]  P. van de Borne,et al.  Sympathetic control after cardiac resynchronization therapy: responders versus nonresponders. , 2006, American journal of physiology. Heart and circulatory physiology.

[76]  Stefan Wagner,et al.  Ca2+/calmodulin-dependent protein kinase II regulates cardiac Na+ channels. , 2006, The Journal of clinical investigation.

[77]  G. Kratassiouk,et al.  Myocyte apoptosis during acute myocardial infarction in rats is related to early sarcolemmal translocation of annexin A5 in border zone. , 2006, American journal of physiology. Heart and circulatory physiology.

[78]  Nick Freemantle,et al.  Longer-term effects of cardiac resynchronization therapy on mortality in heart failure [the CArdiac REsynchronization-Heart Failure (CARE-HF) trial extension phase]. , 2006, European heart journal.

[79]  David D Spragg,et al.  Pathobiology of left ventricular dyssynchrony and resynchronization. , 2006, Progress in cardiovascular diseases.

[80]  D. Kass,et al.  Differential regional gene expression from cardiac dyssynchrony induced by chronic right ventricular free wall pacing in the mouse. , 2006, Physiological genomics.

[81]  Itsuo Kodama,et al.  Potassium Channel Subunit Remodeling in Rabbits Exposed to Long-Term Bradycardia or Tachycardia: Discrete Arrhythmogenic Consequences Related to Differential Delayed-Rectifier Changes , 2006, Circulation.

[82]  J. Deharo,et al.  Diastolic asynchrony is more frequent than systolic asynchrony in dilated cardiomyopathy and is less improved by cardiac resynchronization therapy. , 2005, Journal of the American College of Cardiology.

[83]  D. Kass,et al.  Abnormal conduction and repolarization in late-activated myocardium of dyssynchronously contracting hearts. , 2005, Cardiovascular research.

[84]  Jeroen J. Bax,et al.  Effect of cardiac resynchronization therapy on inducibility of ventricular tachyarrhythmias in cardiac arrest survivors with either ischemic or idiopathic dilated cardiomyopathy. , 2005, The American journal of cardiology.

[85]  J. Daubert,et al.  The effect of cardiac resynchronization on morbidity and mortality in heart failure. , 2005, The New England journal of medicine.

[86]  C. Valdivia,et al.  Increased late sodium current in myocytes from a canine heart failure model and from failing human heart. , 2005, Journal of molecular and cellular cardiology.

[87]  P. Trouvé,et al.  Externalization of endogenous annexin A5 participates in apoptosis of rat cardiomyocytes. , 2004, Cardiovascular research.

[88]  D. DeMets,et al.  Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. , 2004, New England Journal of Medicine.

[89]  Catherine Klersy,et al.  Interventricular and intraventricular dyssynchrony are common in heart failure patients, regardless of QRS duration. , 2004, European heart journal.

[90]  Michel Haïssaguerre,et al.  Intra-left ventricular electromechanical asynchrony. A new independent predictor of severe cardiac events in heart failure patients. , 2004, Journal of the American College of Cardiology.

[91]  D. Rosenbaum,et al.  Transmural Electrophysiological Heterogeneities Underlying Arrhythmogenesis in Heart Failure , 2003, Circulation research.

[92]  Christophe Leclercq,et al.  Regional Alterations in Protein Expression in the Dyssynchronous Failing Heart , 2003, Circulation.

[93]  F. Prinzen,et al.  Absence of reverse electrical remodeling during regression of volume overload hypertrophy in canine ventricles. , 2003, Cardiovascular research.

[94]  B. Nowak,et al.  Cardiac resynchronization therapyhomogenizes myocardial glucosemetabolism and perfusion in dilatedcardiomyopathy and left bundle branch block , 2003 .

[95]  E. Fallen,et al.  Effect of Cardiac Resynchronization on Myocardial Efficiency and Regional Oxidative Metabolism , 2003, Circulation.

[96]  F W Prinzen,et al.  Remodeling by ventricular pacing in hypertrophying dog hearts. , 2001, Cardiovascular research.

[97]  D. Kass,et al.  Left Ventricular or Biventricular Pacing Improves Cardiac Function at Diminished Energy Cost in Patients With Dilated Cardiomyopathy and Left Bundle-Branch Block , 2000, Circulation.

[98]  S. Higgins,et al.  Biventricular pacing diminishes the need for implantable cardioverter defibrillator therapy. Ventak CHF Investigators. , 2000, Journal of the American College of Cardiology.

[99]  R. Page,et al.  Biventricular Pacing Decreases Sympathetic Activity Compared With Right Ventricular Pacing in Patients With Depressed Ejection Fraction , 2000, Circulation.

[100]  E. Milan,et al.  Effects of left bundle branch block on myocardial FDG PET in patients without significant coronary artery stenoses. , 2000, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[101]  Andrew P. Kramer,et al.  Effect of pacing chamber and atrioventricular delay on acute systolic function of paced patients with congestive heart failure. The Pacing Therapies for Congestive Heart Failure Study Group. The Guidant Congestive Heart Failure Research Group. , 1999, Circulation.

[102]  F W Prinzen,et al.  Mapping of regional myocardial strain and work during ventricular pacing: experimental study using magnetic resonance imaging tagging. , 1999, Journal of the American College of Cardiology.

[103]  G. Tomaselli,et al.  Electrophysiological remodeling in hypertrophy and heart failure. , 1999, Cardiovascular research.

[104]  C. H. Chen,et al.  Improved left ventricular mechanics from acute VDD pacing in patients with dilated cardiomyopathy and ventricular conduction delay. , 1999, Circulation.

[105]  R. Mentzer,et al.  Myofibrillar calcium sensitivity of isometric tension is increased in human dilated cardiomyopathies: role of altered beta-adrenergically mediated protein phosphorylation. , 1996, The Journal of clinical investigation.

[106]  R. Moss,et al.  Calcium sensitivity of isometric tension is increased in canine experimental heart failure. , 1995, Circulation research.

[107]  J. Daubert,et al.  Four Chamber Pacing in Dilated Cardiomyopathy , 1994, Pacing and clinical electrophysiology : PACE.

[108]  E. Erdmann,et al.  Alterations of K+ currents in isolated human ventricular myocytes from patients with terminal heart failure. , 1993, Circulation research.

[109]  U. Buell,et al.  Septal glucose metabolism in patients with coronary artery disease and left bundle‐branch block , 1993, Coronary artery disease.

[110]  D. Kass,et al.  Alterations in left ventricular mechanics, energetics, and contractile reserve in experimental heart failure. , 1992, Circulation research.

[111]  W. Baumgartner,et al.  Increase of the 40,000-mol wt pertussis toxin substrate (G protein) in the failing human heart. , 1988, The Journal of clinical investigation.

[112]  K. Sagawa,et al.  Influence of pacing site on canine left ventricular contraction. , 1986, The American journal of physiology.

[113]  R. O'rourke,et al.  Effect of alteration of left ventricular activation sequence on the left ventricular end-systolic pressure-volume relation in closed-chest dogs. , 1985, Circulation research.

[114]  T. Katada,et al.  Functional reconstitution of purified muscarinic receptors and inhibitory guanine nucleotide regulatory protein , 1985, Nature.

[115]  K. Edman Mechanical deactivation induced by active shortening in isolated muscle fibres of the frog. , 1975, The Journal of physiology.

[116]  W. Tang,et al.  Early and late effects of cardiac resynchronization therapy on force-frequency relation and contractility regulating gene expression in heart failure patients. , 2008, Heart rhythm.

[117]  Theo Arts,et al.  Left bundle branch block induces ventricular remodelling and functional septal hypoperfusion. , 2005, European heart journal.

[118]  Stefan Kääb,et al.  Cellular basis of ventricular arrhythmias and abnormal automaticity in heart failure , 1999 .