Berry-Esseen bounds for Chernoff-type non-standard asymptotics in isotonic regression.

This paper derives Berry-Esseen bounds for an important class of non-standard asymptotics in nonparametric statistics with Chernoff-type limiting distributions, with a focus on the isotonic regression model. In the canonical situation of cube-root asymptotics, we obtain a cube-root Berry-Esseen bound (up to multiplicative logarithmic factors) for the speed of distributional approximation of the isotonic estimate to its Chernoff limit. Our method of proof relies on localization techniques in isotonic regression and an anti-concentration inequality for the supremum of a Brownian motion with a polynomial drift. These techniques extend to various Chernoff-type limiting distributions in isotonic regression with (i) general local smoothness conditions, (ii) both interior and boundary points, and (iii) general designs of covariates, where the Berry-Esseen bounds in each scenario match that of the oracle local average estimator with optimal bandwidth, up to multiplicative logarithmic factors.

[1]  U. Grenander On the theory of mortality measurement , 1956 .

[2]  C. James DEPENDENCE OR INDEPENDENCE. , 1963, Hospital management.

[3]  H. Chernoff Estimation of the mode , 1964 .

[4]  H. Barnett A Theory of Mortality , 1968 .

[5]  Prakasa Rao Estimation of a unimodal density , 1969 .

[6]  B. Rao Estimation for distributions with monotone failure rate , 1970 .

[7]  P. Major,et al.  An approximation of partial sums of independent RV'-s, and the sample DF. I , 1975 .

[8]  L. Shepp The joint density of the maximum and its location for a Wiener process with drift , 1979, Journal of Applied Probability.

[9]  Erwin Bolthausen,et al.  The Berry-Esseén theorem for strongly mixing Harris recurrent Markov chains , 1982 .

[10]  E. Bolthausen Exact Convergence Rates in Some Martingale Central Limit Theorems , 1982 .

[11]  Computation of the distribution of the location of the maximum of Brownian motion minus a parabola , 2010, 1011.0022.

[12]  P. Hall,et al.  Reversing the Berry-Esseen inequality , 1984 .

[13]  P. Rousseeuw Least Median of Squares Regression , 1984 .

[14]  P. Groeneboom Brownian motion with a parabolic drift and airy functions , 1989 .

[15]  C. Stein Approximate computation of expectations , 1986 .

[16]  Vidmantas Bentkus,et al.  Dependence of the Berry-Esseen estimate on the dimension , 1986 .

[17]  F. T. Wright,et al.  Order restricted statistical inference , 1988 .

[18]  D. Pollard,et al.  Cube Root Asymptotics , 1990 .

[19]  F. Götze On the Rate of Convergence in the Multivariate CLT , 1991 .

[20]  Rosa L. Matzkin Semiparametric Estimation of Monotone and Concave Utility Functions for Polychotomous Choice Models , 1991 .

[21]  J. Wellner,et al.  Information Bounds and Nonparametric Maximum Likelihood Estimation , 1992 .

[22]  Cun-Hui Zhang,et al.  Estimating a Monotone Density from Censored Observations , 1994 .

[23]  Jian Huang,et al.  Estimation of a Monotone Density or Monotone Hazard Under Random Censoring , 1995 .

[24]  A. Borodin,et al.  Handbook of Brownian Motion - Facts and Formulae , 1996 .

[25]  E. Rio Sur le théorème de Berry-Esseen pour les suites faiblement dépendantes , 1996 .

[26]  Yosef Rinott,et al.  Multivariate normal approximations by Stein's method and size bias couplings , 1996 .

[27]  Y. Rinott,et al.  A Multivariate CLT for Local Dependence withn -1/2 log nRate and Applications to Multivariate Graph Related Statistics , 1996 .

[28]  M. Talagrand New concentration inequalities in product spaces , 1996 .

[29]  M. Schell,et al.  The Reduced Monotonic Regression Method , 1997 .

[30]  Y. Rinott,et al.  On coupling constructions and rates in the CLT for dependent summands with applications to the antivoter model and weighted $U$-statistics , 1997 .

[31]  Berry-Esseen bounds for statistics of weakly dependent samples , 1997 .

[32]  Geurt Jongbloed,et al.  Isotonic inverse estimators for nonparametric deconvolution , 1998 .

[33]  Mikhail Lifshits,et al.  Local Properties of Distributions of Stochastic Functionals , 1998 .

[34]  Hendrik P. Lopuhaä,et al.  Asymptotic normality of the $L_1$ error of the Grenander estimator , 1999 .

[35]  Jon A. Wellner,et al.  Two estimators of the mean of a counting process with panel count data , 2000 .

[36]  Q. Shao,et al.  Gaussian processes: Inequalities, small ball probabilities and applications , 2001 .

[37]  J. Wellner,et al.  Computing Chernoff's Distribution , 2001 .

[38]  P. Bühlmann,et al.  Analyzing Bagging , 2001 .

[39]  V. Bentkus On the dependence of the Berry–Esseen bound on dimension , 2003 .

[40]  O. Bousquet Concentration Inequalities for Sub-Additive Functions Using the Entropy Method , 2003 .

[41]  Martin Raič,et al.  Normal Approximation by Stein ’ s Method , 2003 .

[42]  Vladimir N. Kulikov,et al.  Asymptotic normality of the Lk-error of the Grenander estimator , 2006, math/0602244.

[43]  Louis H. Y. Chen,et al.  Normal approximation under local dependence , 2004, math/0410104.

[44]  Hendrik P. Lopuhaa,et al.  The behavior of the NPMLE of a decreasing density near the boundaries of the support , 2006, math/0607015.

[45]  P. Rousseeuw,et al.  Wiley Series in Probability and Mathematical Statistics , 2005 .

[46]  V. Koltchinskii,et al.  Concentration inequalities and asymptotic results for ratio type empirical processes , 2006, math/0606788.

[47]  S. Chatterjee A generalization of the Lindeberg principle , 2005, math/0508519.

[48]  O. Hössjer,et al.  A general asymptotic scheme for inference under order restrictions , 2006, math/0611270.

[49]  Sourav Chatterjee,et al.  A new approach to strong embeddings , 2007, 0711.0501.

[50]  Ian W. McKeague,et al.  Confidence sets for split points in decision trees , 2007 .

[51]  S. Chatterjee,et al.  MULTIVARIATE NORMAL APPROXIMATION USING EXCHANGEABLE PAIRS , 2007, math/0701464.

[52]  Q. Shao,et al.  Stein's Method of Exchangeable Pairs with Application to the Curie-Weiss Model , 2009, 0907.4450.

[53]  S. Lahiri,et al.  A Berry–Esseen theorem for sample quantiles under weak dependence , 2009, 0902.4796.

[54]  G. Reinert,et al.  Multivariate normal approximation with Stein’s method of exchangeable pairs under a general linearity condition , 2007, 0711.1082.

[55]  Guy Louchard,et al.  The maximum of Brownian motion with parabolic drift , 2010, 1002.0497.

[56]  Ronny Luss,et al.  Efficient regularized isotonic regression with application to gene--gene interaction search , 2011, 1102.5496.

[57]  A. W. van der Vaart,et al.  A local maximal inequality under uniform entropy. , 2010, Electronic journal of statistics.

[58]  P. Soulier,et al.  Monotone spectral density estimation , 2009, 0901.3471.

[59]  Kengo Kato,et al.  Gaussian approximation of suprema of empirical processes , 2012, 1212.6885.

[60]  Hendrik P. Lopuhaa,et al.  The limit distribution of the L∞ -error of Grenander-type estimators , 2011, 1111.5934.

[61]  H. Jankowski Convergence of linear functionals of the Grenander estimator under misspecification , 2012, 1207.6614.

[62]  Kengo Kato,et al.  Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors , 2013 .

[63]  Kengo Kato,et al.  Comparison and anti-concentration bounds for maxima of Gaussian random vectors , 2013, 1301.4807.

[64]  P. Groeneboom,et al.  Chernoff's distribution and differential equations of parabolic and Airy type , 2013, 1305.6053.

[65]  J. Wellner,et al.  Chernoff's density is log-concave. , 2012, Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability.

[66]  Kengo Kato,et al.  Central limit theorems and bootstrap in high dimensions , 2014, 1412.3661.

[67]  Kengo Kato,et al.  Gaussian approximation of suprema of empirical processes , 2014 .

[68]  Geurt Jongbloed,et al.  Nonparametric Estimation under Shape Constraints , 2014 .

[69]  Kengo Kato,et al.  Empirical and multiplier bootstraps for suprema of empirical processes of increasing complexity, and related Gaussian couplings , 2015, 1502.00352.

[70]  Institute of Mathematical Statistics LECTURE NOTES ? MONOGRAPH SERIES , 2016 .

[71]  J. Wellner,et al.  A law of the iterated logarithm for Grenander's estimator. , 2015, Stochastic processes and their applications.

[72]  M. Jirak Berry–Esseen theorems under weak dependence , 2016, 1606.01617.

[73]  Lynne Seymour,et al.  Institute of Mathematical Statistics LECTURE NOTES ? MONOGRAPH SERIES , 2016 .

[74]  Kengo Kato,et al.  Detailed proof of Nazarov's inequality , 2017, 1711.10696.

[75]  Bodhisattva Sen,et al.  Editorial: Special Issue on “Nonparametric Inference Under Shape Constraints” , 2018, Statistical Science.

[76]  Cun-Hui Zhang,et al.  Limit distribution theory for multiple isotonic regression , 2019 .

[77]  Soumendu Sundar Mukherjee,et al.  Weak convergence and empirical processes , 2019 .

[78]  Q. Shao,et al.  Berry–Esseen bounds of normal and nonnormal approximation for unbounded exchangeable pairs , 2017, The Annals of Probability.

[79]  Konstantinos Fokianos,et al.  On Integrated L1 Convergence Rate of an Isotonic Regression Estimator for Multivariate Observations , 2017, IEEE Transactions on Information Theory.

[80]  Yuta Koike,et al.  Large-dimensional Central Limit Theorem with Fourth-moment Error Bounds on Convex Sets and Balls , 2020, 2009.00339.

[81]  Cun-Hui Zhang,et al.  Limit distribution theory for block estimators in multiple isotonic regression , 2019, The Annals of Statistics.

[82]  Sakinah,et al.  Vol. , 2020, New Medit.

[83]  Yuta Koike,et al.  High-dimensional central limit theorems by Stein’s method , 2020, The Annals of Applied Probability.