Non-injection synthesis of monodisperse Cu-Fe-S nanocrystals and their size dependent properties.

It is demonstrated that ternary Cu-Fe-S nanocrystals differing in composition (from Cu-rich to Fe-rich), structure (chalcopyrite or high bornite) and size can be obtained from a mixture of CuCl, FeCl3, thiourea and oleic acid (OA) in oleylamine (OLA) using the heating up procedure. This new preparation method yields the smallest Cu-Fe-S nanocrystals ever reported to date (1.5 nm for the high bornite structure and 2.7 nm for the chalcopyrite structure). A comparative study of nanocrystals of the same composition (Cu1.6Fe1.0S2.0) but different in size (2.7 nm and 9.3 nm) revealed a pronounced quantum confinement effect, confirmed by three different techniques: UV-vis spectroscopy, cyclic voltammetry and Mössbauer spectroscopy. The optical band gap increased from 0.60 eV in the bulk material to 0.69 eV in the nanocrystals of 9.3 nm size and to 1.39 eV in nanocrystals of 2.7 nm size. The same trend was observed in the electrochemical band gaps, derived from cyclic voltammetry studies (band gaps of 0.74 eV and 1.54 eV). The quantum effect was also manifested in Mössbauer spectroscopy by an abrupt change in the spectrum from a quadrupole doublet to a Zeeman sextet below 10 K, which could be interpreted in terms of the well defined energy states in these nanoparticles, resulting from quantum confinement. The Mössbauer spectroscopic data confirmed, in addition to the results of XPS spectroscopy, the co-existence of Fe(iii) and Fe(ii) in the synthesized nanocrystals. The organic shell composition was investigated by NMR (after dissolution of the inorganic core) and IR spectroscopy. Both methods identified oleylamine (OLA) and 1-octadecene (ODE) as surfacial ligands, the latter being formed in situ via an elimination-hydrogenation reaction occurring between OLA and the nanocrystal surface.

[1]  A. Pron,et al.  Synthesis and surface chemistry of high quality wurtzite and kesterite Cu2ZnSnS4 nanocrystals using tin(II) 2-ethylhexanoate as a new tin source. , 2015, Chemical communications.

[2]  A. Pron,et al.  Anchor Groups Effect on Spectroscopic and Electrochemical Properties of Quaternary Nanocrystals Cu–In–Zn–S Capped with Arylamine Derivatives , 2015 .

[3]  B. Satpati,et al.  Mechanism of versatile catalytic activities of quaternary CuZnFeS nanocrystals designed by a rapid synthesis route. , 2015, Small.

[4]  Y. Tseng,et al.  Synthesis, structural and electronic properties of monodispersed self-organized single crystalline nanobricks of isocubanite CuFe2S3 , 2015 .

[5]  Prashant Kumar,et al.  A simple one pot synthesis of cubic Cu5FeS4 , 2014 .

[6]  T. Hanrath,et al.  The Strongest Particle: Size-Dependent Elastic Strength and Debye Temperature of PbS Nanocrystals. , 2014, The journal of physical chemistry letters.

[7]  A. Pron,et al.  Ligand exchange in quaternary alloyed nanocrystals--a spectroscopic study. , 2014, Physical chemistry chemical physics : PCCP.

[8]  P. Patil,et al.  Towards environmentally benign approaches for the synthesis of CZTSSe nanocrystals by a hot injection method: a status review. , 2014, Chemical communications.

[9]  Liberato Manna,et al.  New materials for tunable plasmonic colloidal nanocrystals. , 2014, Chemical Society reviews.

[10]  A. Pron,et al.  A simple route to alloyed quaternary nanocrystals Ag-In-Zn-S with shape and size control. , 2014, Inorganic chemistry.

[11]  M. Chuev Macroscopic quantum effects observed in Mössbauer spectra of antiferromagnetic nanoparticles , 2014 .

[12]  G. Reiss,et al.  Electronic structure and optical band gap determination of NiFe2 O4 , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[13]  Prashant Kumar,et al.  Precursor driven one pot synthesis of wurtzite and chalcopyrite CuFeS2. , 2013, Chemical communications.

[14]  Chun-Rong Lin,et al.  Synthesis, structural and magnetic properties of self-organized single-crystalline nanobricks of chalcopyrite CuFeS2 , 2013 .

[15]  P. Reiss,et al.  Ternary and quaternary metal chalcogenide nanocrystals: synthesis, properties and applications , 2013 .

[16]  Z. Hens,et al.  A Solution NMR Toolbox for Characterizing the Surface Chemistry of Colloidal Nanocrystals , 2013 .

[17]  S. Mourdikoudis,et al.  Oleylamine in Nanoparticle Synthesis , 2013 .

[18]  W. Su,et al.  Facile synthesis of wurtzite copper–zinc–tin sulfide nanocrystals from plasmonic djurleite nuclei , 2013 .

[19]  Haizheng Zhong,et al.  Tuning the Luminescence Properties of Colloidal I-III-VI Semiconductor Nanocrystals for Optoelectronics and Biotechnology Applications. , 2012, The journal of physical chemistry letters.

[20]  S. Feng,et al.  A facile synthetic approach for copper iron sulfide nanocrystals with enhanced thermoelectric performance. , 2012, Nanoscale.

[21]  X. W. Sun,et al.  Full Visible Range Covering InP/ZnS Nanocrystals with High Photometric Performance and Their Application to White Quantum Dot Light‐Emitting Diodes , 2012, Advanced materials.

[22]  M. Amelia,et al.  Electrochemical properties of CdSe and CdTe quantum dots. , 2012, Chemical Society reviews.

[23]  M. A. Malik,et al.  Routes to copper zinc tin sulfide Cu2ZnSnS4 a potential material for solar cells. , 2012, Chemical communications.

[24]  Yixin Zhao,et al.  Development of plasmonic semiconductor nanomaterials with copper chalcogenides for a future with sustainable energy materials , 2012 .

[25]  Yue Wu,et al.  Nontoxic and abundant copper zinc tin sulfide nanocrystals for potential high-temperature thermoelectric energy harvesting. , 2012, Nano letters.

[26]  D. Rossi,et al.  Phase-selective synthesis of bornite nanoparticles , 2011 .

[27]  A. Tao,et al.  Localized surface plasmon resonances of anisotropic semiconductor nanocrystals. , 2011, Journal of the American Chemical Society.

[28]  M. R. Kim,et al.  Reversible tunability of the near-infrared valence band plasmon resonance in Cu(2-x)Se nanocrystals. , 2011, Journal of the American Chemical Society.

[29]  Wei Li,et al.  Electrochemical Considerations for Determining Absolute Frontier Orbital Energy Levels of Conjugated Polymers for Solar Cell Applications , 2011, Advanced materials.

[30]  Zeger Hens,et al.  Size-tunable, bright, and stable PbS quantum dots: a surface chemistry study. , 2011, ACS nano.

[31]  Philipp Gütlich,et al.  Mössbauer Spectroscopy and Transition Metal Chemistry: Fundamentals and Applications , 2011 .

[32]  V. Klimov,et al.  Efficient synthesis of highly luminescent copper indium sulfide-based core/shell nanocrystals with surprisingly long-lived emission. , 2011, Journal of the American Chemical Society.

[33]  V. Bulović,et al.  Colloidal PbS quantum dot solar cells with high fill factor. , 2010, ACS nano.

[34]  H. Teng,et al.  Solution synthesis of high-quality CuInS2 quantum dots as sensitizers for TiO2 photoelectrodes , 2010 .

[35]  N. Bao,et al.  Shape-controlled synthesis of semiconducting CuFeS2 nanocrystals , 2010 .

[36]  M. Kovalenko,et al.  Prospects of colloidal nanocrystals for electronic and optoelectronic applications. , 2010, Chemical reviews.

[37]  D. Dhirhe,et al.  Debye temperature and melting point of ternary chalcopyrite semiconductors , 2009 .

[38]  B. Korgel,et al.  Synthesis of CuInSe(2) nanocrystals with trigonal pyramidal shape. , 2009, Journal of the American Chemical Society.

[39]  Sang‐Il Choi,et al.  Single-crystalline hollow face-centered-cubic cobalt nanoparticles from solid face-centered-cubic cobalt oxide nanoparticles. , 2008, Angewandte Chemie.

[40]  A. Tripathi,et al.  Mössbauer study on microwave synthesized (Cu,Fe) sulfide composites and correlation with natural mineral—cubanite , 2008 .

[41]  Edward H. Sargent,et al.  Engineering the temporal response of photoconductive photodetectors via selective introduction of surface trap states. , 2008, Nano letters.

[42]  Y. Fukunaka,et al.  Facile synthesis of nearly monodispersed copper sulfide nanocrystals , 2007 .

[43]  Igor L. Medintz,et al.  Hydrodynamic dimensions, electrophoretic mobility, and stability of hydrophilic quantum dots. , 2006, The journal of physical chemistry. B.

[44]  T. Omata,et al.  Tunable Photoluminescence Wavelength of Chalcopyrite CuInS2-Based Semiconductor Nanocrystals Synthesized in a Colloidal System , 2006 .

[45]  A. Pron,et al.  Size and ligand effects on the electrochemical and spectroelectrochemical responses of CdSe nanocrystals. , 2005, Physical chemistry chemical physics : PCCP.

[46]  Chao‐Nan Xu,et al.  Finite-size effect on Néel temperature in antiferromagnetic nanoparticles , 2005 .

[47]  K. Parlinski,et al.  Ab initio characterization of magnetic CuFeS 2 , 2004 .

[48]  H. Ohno,et al.  Electric-field control of ferromagnetism , 2000, Nature.

[49]  D. Awschalom,et al.  Magnetoelectronics: Teaching magnets new tricks , 2000, Nature.

[50]  Marius Grundmann,et al.  The contribution of particle core and surface to strain, disorder and vibrations in thiolcapped CdTe nanocrystals , 1998 .

[51]  J. Feldhaus,et al.  EXAFS Studies on the Size Dependence of Structural and Dynamic Properties of CdS Nanoparticles , 1997 .

[52]  P. Guyot-Sionnest,et al.  Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals , 1996 .

[53]  Baek,et al.  Mössbauer study of antiferromagnetic CuFeS2-xSex. , 1994, Physical review. B, Condensed matter.

[54]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[55]  B. Cervelle,et al.  Isocubanite, a New Definition of the Cubic Polymorph of Cubanite CuFe2S3 , 1988, Mineralogical Magazine.

[56]  L. F. Donaghey,et al.  Surface chemistry of CuxS and CuxS/CdS determined from x‐ray photoelectron spectroscopy , 1985 .

[57]  F. H. Field,et al.  Fast atom bombardment study of glycerol: mass spectra and radiation chemistry , 1982 .

[58]  J. Tossell,et al.  The electronic structure of CuFeS2, chalcopyrite, from x‐ray emission and x‐ray photoelectron spectroscopy and Xα calculations , 1982 .

[59]  A. Henglein Photo‐Degradation and Fluorescence of Colloidal‐Cadmium Sulfide in Aqueous Solution , 1982 .

[60]  Bard,et al.  Design of semiconductor photoelectrochemical systems for solar energy conversion. Technical report , 1981 .

[61]  P. Gütlich,et al.  Mössbauer Spectroscopy and Transition Metal Chemistry , 1978 .

[62]  T. Teranishi,et al.  Optical Properties of a Magnetic Semiconductor: Chalcopyrite CuFeS 2 . I. Absorption Spectra of CuFeS 2 and Fe-Doped CuAlS 2 and CuGaS 2 , 1974 .

[63]  N. N. Greenwood,et al.  Mössbauer effect studies on cubanite (CuFe2S3) and related iron sulphides , 1968 .

[64]  J. M. Hastings,et al.  Symmetry of Magnetic Structures: Magnetic Structure of Chalcopyrite , 1958 .

[65]  C. Goodman,et al.  New Semiconductors with the Chalcopyrite Structure , 1956 .

[66]  L. Pauling,et al.  The Crystal Structure of Chalcopyrite CuFeS2 , 1932 .

[67]  J. H. Ellis,et al.  The Crystal Structure of Chalcopyrite Determined by X Rays. , 1917, Proceedings of the National Academy of Sciences of the United States of America.