A robust method for detecting arbitrarily tilted human faces in color images

This paper presents the design of a robust face detector that can detect arbitrarily tilted human faces in color images. This detector locates face regions by identifying mouth corners and eyes. The novel techniques included in the proposed detector are: (1) a method for compensating the colors of the input images, (2) a method for deskewing tilted faces, (3) a method for locating mouth corners, and (4) a discriminant function for positioning eyes. According to the performance evaluation on three test databases which contain 1791 faces on 1580 images, the proposed method achieves a precision rate of 94.62% and a recall rate of 92.24% in average at the detection speed of 1.6 faces per second. The performance of the proposed detector also slightly outperforms a detector from CMU.

[1]  Hang-Joon Kim,et al.  PCA-Base Real-Time Face Detection and Tracking , 2002 .

[2]  Linda G. Shapiro,et al.  Computer Vision , 2001 .

[3]  Xilin Chen,et al.  Combining Skin Color Model and Neural Network for Rotation Invariant Face Detection , 2000, ICMI.

[4]  Shaogang Gong,et al.  Modelling facial colour and identity with Gaussian mixtures , 1998, Pattern Recognit..

[5]  Vladimir Vezhnevets,et al.  A Survey on Pixel-Based Skin Color Detection Techniques , 2003 .

[6]  Aleix M. Martinez,et al.  The AR face database , 1998 .

[7]  Anil K. Jain,et al.  Face Detection in Color Images , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  John Watkinson Introduction to Digital Video , 1994 .

[9]  Takeo Kanade,et al.  Rotation Invariant Neural Network-Based Face Detection , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[10]  Georgios Tziritas,et al.  Face Detection Using Quantized Skin Color Regions Merging and Wavelet Packet Analysis , 1999, IEEE Trans. Multim..

[11]  Mika Laaksonen,et al.  Using the skin locus to cope with chang-ing illumination conditions in color-based face tracking , 2000 .

[12]  PoggioTomaso,et al.  Example-Based Learning for View-Based Human Face Detection , 1998 .

[13]  Stan Z. Li,et al.  Real-time multi-view face detection , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.

[14]  Hang Joon Kim,et al.  Real-Time Face Detection and Tracking Using PCA and NN , 2002, PRICAI.

[15]  James L. Crowley,et al.  Multi-modal tracking of faces for video communications , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[16]  Takeo Kanade,et al.  A statistical method for 3D object detection applied to faces and cars , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[17]  Anil K. Jain Fundamentals of Digital Image Processing , 2018, Control of Color Imaging Systems.

[18]  Narendra Ahuja,et al.  Detecting Faces in Images: A Survey , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Charles A. Poynton,et al.  A technical introduction to digital video , 1996 .

[20]  Erik Hjelmås,et al.  Face Detection: A Survey , 2001, Comput. Vis. Image Underst..

[21]  Sun-Yuan Kung,et al.  Face recognition/detection by probabilistic decision-based neural network , 1997, IEEE Trans. Neural Networks.

[22]  Yi-Ting Huang,et al.  A novel method for detecting lips, eyes and faces in real time , 2003, Real Time Imaging.

[23]  David G. Stork,et al.  Pattern Classification , 1973 .

[24]  Takeo Kanade,et al.  Neural Network-Based Face Detection , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Tomaso A. Poggio,et al.  Example-Based Learning for View-Based Human Face Detection , 1998, IEEE Trans. Pattern Anal. Mach. Intell..