Cationic Closo Carboranes—Promising Weakly Coordinating Ions

The unexplored carbon rich cationic closo carboranes, C3Bn−3Hn+1 (n=5, 6, 7, 10, 12) are investigated theoretically. The position isomers were calculated at the B3LYP/6‐31G* level, and the charge distribution in the cluster is estimated by NBO analysis. The criterion of ring‐cap orbital overlap compatibility along with the number of BC, CC, and BB bonds help in explaining the stability order in each category. The most stable isomer is the one with maximum ring‐cap orbital overlap and largest number of BC bonds. The order of relative stability among the trigonal bipyramid is 1c>1b>1a′, where the stability is proportional to the number of CH caps over the small three‐membered ring. The C3B3H6+ isomer with the one allyl C3 group (2b) is more favorable than the one with a cyclopropenyl group (2a). Among the C3B4H7+ isomers the stability order is 3e>3d>3c>3b>3a, which mostly depends on the ring‐cap orbital overlap. In the bicapped square antiprism (4) where there is large number of isomers, the order follows the rule of ring cap compatibility and the number of BC bonds. The order of 5e>5d>5c>5b>5a obtained from the calculations is in perfect agreement with the above sited rules. Equations (1) – (5) devised for estimating the stability of isomers of C3Bn−3Hn+ indicate an increase in stability with cage size. The mono‐positive charge of the isomers is distributed throughout the cage, making them suitable candidates as weakly electrophillic cations. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 1542–1551, 2001

[1]  P. Schleyer,et al.  A New Carborane Cage: Hexacarba-arachno-dodecaborane(12). , 1998, Angewandte Chemie.

[2]  R. Williams,et al.  A SIX-BORON CARBORANE (CH3)2C2B6H6 AND B6H10:P (C6H5)3 FROM HEXABORANE-10, , 1965 .

[3]  M. A. Fox,et al.  Gas-phase reactions of tetraborane(10) with 1-en-3-ynes: syntheses of the parent tricarbahexaborane, nido-2,3,4-C3B3H7, and its derivatives , 1996 .

[4]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[5]  R. Grimes,et al.  Tricarba-'closo'-octaborane(7), a Polyhedral Carborane Containing a Bare Carbon Atom. , 1971 .

[6]  B. Wrackmeyer,et al.  Combining carbaboranes with transition-metal clusters; synthesis and X-ray structure analysis of a 1,2,3,4,5-pentamethyl-2,3,4,5-tetracarba-nido-hexaborane(6) derivative , 1996 .

[7]  B. M. Gimarc,et al.  Three-dimensional Hückel molecular orbital energy level correlation diagrams for polyhedral rearrangements , 1995 .

[8]  P. Schleyer,et al.  Molecular structure of 1-thia-closo-dodecaborane(11) studied by electron diffraction complemented by ab initio calculations , 1992 .

[9]  M. Hawthorne The Role of Chemistry in the Development of Boron Neutron Capture Therapy of Cancer , 1993 .

[10]  W. Lipscomb,et al.  Self‐consistent‐field wavefunctions for complex molecules. The approximation of partial retention of diatomic differential overlap , 1973 .

[11]  C. Reed,et al.  Isolation of Protonated Arenes (Wheland Intermediates) with BArF and Carborane Anions. A Novel Crystalline Superacid , 1999 .

[12]  L. Radom,et al.  closo-silaboranes and closo-carboranes : contrasting relative stabilities and breakdown of the rule of topological charge stabilization$ , 1992 .

[13]  C. Reed,et al.  A Crystalline [H9O4]+ Hydronium Ion Salt with a Weakly Coordinating Anion , 1995 .

[14]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[15]  J. Brewer,et al.  REACTION OF 1,2-DEHYDRO-O-CARBORANE WITH ACETYLENES. SYNTHESIS AND STRUCTURE OF A CARBORANE ANALOGUE OF BENZOCYCLOBUTADIENE1 , 1995 .

[16]  L. Curtiss,et al.  Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint , 1988 .

[17]  A. Benesi,et al.  Closely Approaching the Silylium Ion (R3Si+) , 1993, Science.

[18]  W. Siebert Advances in boron chemistry , 1997 .

[19]  Kenneth B. Wiberg,et al.  Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane , 1968 .

[20]  G. E. Ryschkewitsch,et al.  Bis-amine derivatives of BH2+ with methylpyridines , 1968 .

[21]  B. M. Gimarc Topological charge stabilization , 1983 .

[22]  M. Hawthorne,et al.  Electrophilic reactions of protonated closo-B10H102- with arenes, alkane carbon-hydrogen bonds, and triflate ion forming aryl, alkyl, and triflate nido-6-X-B10H13 derivatives , 1992 .

[23]  T. Vondráḱ,et al.  Electronic structure of heteroboranes derived from the icosahedral skeleton. UV photoelectron and MNDO study , 1993 .

[24]  S. Strauss The search for larger and more weakly coordinating anions , 1993 .

[25]  James E. Huheey,et al.  Inorganic chemistry; principles of structure and reactivity , 1972 .

[26]  K. Wade The structural significance of the number of skeletal bonding electron-pairs in carboranes, the higher boranes and borane anions, and various transition-metal carbonyl cluster compounds , 1971 .

[27]  V. I. Bregadze,et al.  Dicarba-closo-dodecaboranes C2B10H12 and their derivatives , 1992 .

[28]  S. Strauss,et al.  Facile Conversion of [(η6-C6H6)Rh(CO)2][1-Et-CB11F11] into the Nonclassical Rhodium(I) Carbonyl [Rh(CO)4][1-Et-CB11F11] , 1999 .

[29]  M. Rosseinsky Recent Developments in the Chemistry and Physics of Metal Fullerides , 1998 .

[30]  M. A. Fox,et al.  The true identity of the ‘bare-carbon’ cluster, closo-C3B5H7 , 1994 .

[31]  Jens Müller,et al.  closo‐Azadodecaborane, NB11H12 , 1991 .

[32]  Paul von Ragué Schleyer,et al.  Stability and Three-Dimensional Aromaticity of closo-Monocarbaborane Anions, CBn-1Hn-, and closo-Dicarboranes, C2Bn-2Hn , 1998 .

[33]  J. Casanova The borane, carborane, carbocation continuum , 1998 .

[34]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[35]  R. King Chemical applications of topology and group theory. 11. Degenerate edges as a source of inherent fluxionality in deltahedra , 1981 .

[36]  R. Grimes,et al.  Synthesis and chemistry of .mu.-silyl and .mu.-germyl carboranes , 1972 .

[37]  L. Hsu,et al.  Synthesis of closo-1-methylphosphadodecaborane(12), B11H11PCH3 and nido-7-methylphosphaundecaborane(13), B10H12PCH3, from the [B11H13]2- anion and their molecular structures , 1989 .

[38]  Earl L. Muetterties,et al.  Boron Hydride Chemistry , 1975 .

[39]  K. Shudo,et al.  Potent estrogenic agonists bearing dicarba-closo-dodecaborane as a hydrophobic pharmacophore. , 1999, Journal of medicinal chemistry.

[40]  P. Schleyer,et al.  Molecular structure of 1-aza-closo-dodecaborane(12). Experimental and theoretical refinement , 1993 .

[41]  L. J. Todd,et al.  Phosphaboranes and carbaphosphaboranes , 1967 .

[42]  J. Michl,et al.  The Explosive “Inert” Anion CB11(CF3)12- , 2000 .

[43]  Maitland Jones,et al.  Reaction of 1,2-dehydro-o-carborane with acetylenes. Ene reactions and cycloaddition to give an analog of benzocyclobutadiene , 1994 .

[44]  K. Wade,et al.  Structural and Bonding Patterns in Cluster Chemistry , 1976 .

[45]  D. Hamlin,et al.  Synthesis of Highly Iodinated Icosahedral Mono- and Dicarbon Carboranes. , 1996, The Journal of organic chemistry.

[46]  M. Hawthorne,et al.  Recognition of Electron-Donating Guests by Carborane-Supported Multidentate Macrocyclic Lewis Acid Hosts: Mercuracarborand Chemistry , 1997 .

[47]  B. M. Gimarc,et al.  Predictions of relative stabilities among series of carborane isomers by the criterion of topological charge stabilization , 1986 .

[48]  Warren J. Hehre,et al.  AB INITIO Molecular Orbital Theory , 1986 .

[49]  W. Lipscomb,et al.  Fluxional behavior in octahydrooctaborate(2-). A theoretical study , 1979 .

[50]  H. Nöth,et al.  Beiträge zur Chemie des Bors, XXXIV. Zur Reaktion von Bortrichlorid‐Dimethylamin mit Aminen , 1966 .

[51]  L. Sneddon,et al.  Tricarbon carborane chemistry. 1. Syntheses and structural characterizations of monocage iron, manganese, and nickel metallatricarbaborane complexes , 1992 .

[52]  E. Sze,et al.  Weakly coordinating nature of a carborane cage bearing different halogen atoms. Synthesis and structural characterization of icosahedral mixed halocarborane anions, 1-H-CB11Y5X6- (X, Y = Cl, Br, I). , 2000, Inorganic chemistry.

[53]  J. Michl,et al.  C-Hydroxydicarba-closo-dodecaboranes. , 1997, Inorganic chemistry.

[54]  Nan-Sheng Li,et al.  An unprecedented, tandem Aldol-Grob reaction sequence , 1998 .

[55]  H. Kagechika,et al.  Dicarba-closo-dodecaboranes as a pharmacophore. Novel potent retinoidal agonists. , 1999, Chemical & pharmaceutical bulletin.

[56]  N. E. Miller,et al.  Borane cations of bases with amide and cyanide substitution , 1972 .

[57]  N. Hosmane,et al.  Improved Synthetic Routes to Small Carboranes. Bench-Scale Preparation of Nido-2,3-C2B4H8 Derivatives from B5H9 and from B3H8(-) Salts. , 1979 .

[58]  B. T. King,et al.  DODECAMETHYLCARBA-CLOSO-DODECABORATE(-) ANION, CB11ME12- , 1996 .

[59]  C. Reed Carboranes: A New Class of Weakly Coordinating Anions for Strong Electrophiles, Oxidants, and Superacids , 1998 .

[60]  H. Nöth,et al.  Beiträge zur Chemie des Bors, XXV. Bis(amin)‐dihydrido‐bor(III)‐halogenide, [(R3–nHnN)2BH 2]X2 , 1964 .

[61]  F. Weinhold,et al.  Natural population analysis , 1985 .

[62]  R. Rudolph,et al.  New heteroborane, 1-thia-closo-decarborane(9) B9H9S , 1973 .

[63]  J. Garrett,et al.  Optically active boron cation , 1967 .

[64]  M. M. Balakrishnarajan,et al.  Electronic Requirements of Polycondensed Polyhedral Boranes , 2000 .

[65]  G. Wong,et al.  Preparation of the pentagonal pyramidal carborane, 2,3,4,5-tetracarba-nido-hexaborane(6) , 1970 .

[66]  J. Nagamatsu,et al.  Superconductivity at 39 K in magnesium diboride , 2001, Nature.

[67]  S. Ivanov,et al.  Mono-, Di-, Tri-, and Tetracarbonyls of Copper(I), Including the Structures of Cu(CO)2(1-Bn-CB11F11) and [Cu(CO)4][1-Et-CB11F11] , 1999 .

[68]  M. M. Balakrishnarajan,et al.  The ubiquitous icosahedral B12 in boron chemistry , 1999 .