Fokker-Planck equation in bounded domain

We study the existence and the uniqueness of a solution $\fy$ to the linear Fokker-Planck equation $-\Delta \fy + \div(\fy \F) = f$ in a bounded domain of $\R^d$ when $\F$ is a "confinement" vector field acting for instance like the inverse of the distance to the boundary. An illustration of the obtained results is given within the framework of fluid mechanics and polymer flows.

[1]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[2]  Nader Masmoudi,et al.  Well‐posedness for the FENE dumbbell model of polymeric flows , 2008 .

[3]  Cédric Chauvière,et al.  A fast solver for Fokker-Planck equation applied to viscoelastic flows calculations , 2003 .

[4]  Jérôme Droniou,et al.  Non-coercive Linear Elliptic Problems , 2002 .

[5]  Benjamin Jourdain,et al.  Existence of solution for a micro–macro model of polymeric fluid: the FENE model , 2004 .

[6]  Gareth H. McKinley,et al.  Deficiencies of FENE dumbbell models in describing the rapid stretching of dilute polymer solutions , 2001 .

[7]  F. Nier,et al.  Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians , 2005 .

[8]  Corso Stati Uniti,et al.  Fick's law and Fokker–Planck equation in inhomogeneous environments , 2007, 0711.0847.

[9]  E. Lieb,et al.  On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation , 1976 .

[10]  H. Ch. Öttinger,et al.  Stochastic Processes in Polymeric Fluids: Tools and Examples for Developing Simulation Algorithms , 1995 .

[11]  Hans Christian Öttinger,et al.  Stochastic Processes in Polymeric Fluids , 1996 .

[12]  G. Métivier Comportement asymptotique des valeurs propres d'opérateurs elliptiques dégénérés , 1975 .

[13]  Giuseppe Toscani,et al.  ON CONVEX SOBOLEV INEQUALITIES AND THE RATE OF CONVERGENCE TO EQUILIBRIUM FOR FOKKER-PLANCK TYPE EQUATIONS , 2001 .

[14]  B. Turesson,et al.  Nonlinear Potential Theory and Weighted Sobolev Spaces , 2000 .

[15]  F. Hérau,et al.  Isotropic Hypoellipticity and Trend to Equilibrium for the Fokker-Planck Equation with a High-Degree Potential , 2004 .

[16]  J. Vázquez,et al.  Noncoercive convection–diffusion elliptic problems with Neumann boundary conditions , 2009 .

[17]  F. Boyer Trace theorems and spatial continuity properties for the solutions of the transport equation , 2005, Differential and Integral Equations.

[18]  Pierre Fabrie,et al.  Eléments d'analyse pour l'étude de quelques modèles d'écoulements de fluides visqueux incompressibles , 2006 .

[19]  R. Ruth,et al.  Stability of dynamical systems , 1988 .

[20]  J. Heinonen,et al.  Nonlinear Potential Theory of Degenerate Elliptic Equations , 1993 .

[21]  E. Stredulinsky Weighted Inequalities and Degenerate Elliptic Partial Differential Equations , 1984 .

[22]  F. Sattin,et al.  When can the Fokker–Planck equation describe anomalous or chaotic transport? Intuitive aspects , 2007, Physical review letters.

[23]  Constitutive Relations for Viscoleastic Fluid Models Derived from Kinetic Theory , 2004 .

[24]  J. Leray,et al.  Topologie et équations fonctionnelles , 1934 .

[25]  Laurent Chupin,et al.  The FENE Model for Viscoelastic Thin Film Flows , 2009 .