On Ricci solitons of cohomogeneity one
暂无分享,去创建一个
[1] G. Tian,et al. Uniqueness of Kähler-Ricci solitons , 2000 .
[2] G. Tian,et al. A new holomorphic invariant and uniqueness of Kähler-Ricci solitons , 2002 .
[3] T. Willmore. EINSTEIN MANIFOLDS (Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 10) , 1987 .
[4] M. Cvetič,et al. Communications in Mathematical Physics Ricci-Flat Metrics , Harmonic Forms and Brane Resolutions , 2002 .
[5] Mckenzie Y. Wang. Einstein metrics from symmetry and bundle constructions , 2001 .
[6] G. Tian. On Kähler-Einstein metrics on certain Kähler manifolds withC1 (M)>0 , 1987 .
[7] G. Valent,et al. On a class of compact and non-compact quasi-Einstein metrics and their renormalizability properties , 1996 .
[8] Toshikazu Sunada,et al. Curvature and Topology of Riemannian Manifolds , 1986 .
[9] Mckenzie Y. Wang,et al. Some New Examples of Non-K\"ahler Ricci Solitons , 2008, 0806.4408.
[10] J. Graver,et al. Graduate studies in mathematics , 1993 .
[11] Y. Siu. The existence of Kähler-Einstein metrics on manifolds with positive anticanonical line bundle and a suitable finite symmetry group , 1988 .
[12] D. Guan. QUASI-EINSTEIN METRICS , 1995 .
[13] H. Lawson. Lectures On Minimal Submanifolds , 1980 .
[14] Mckenzie Y. Wang,et al. Einstein metrics on $S^{2}$-bundles , 1998 .
[15] P. Griffiths,et al. The intermediate Jacobian of the cubic threefold , 1972 .
[16] Dennis DeTurck,et al. Some regularity theorems in riemannian geometry , 1981 .
[17] Xu-jia Wang,et al. Kahler-Ricci solitons on toric manifolds with positive first Chern class , 2004 .
[18] G. Perelman. The entropy formula for the Ricci flow and its geometric applications , 2002, math/0211159.
[19] H. Pedersen,et al. Quasi-Einstein Kähler Metrics , 1999 .
[20] Mckenzie Y. Wang,et al. The initial value problem for cohomogeneity one Einstein metrics , 2000 .
[21] R. Hamilton,et al. The formations of singularities in the Ricci Flow , 1993 .
[22] Wan-Xiong Shi. Ricci deformation of the metric on complete noncompact Riemannian manifolds , 1989 .
[23] Bo Yang. A characterization of Koiso's typed solitons , 2008, 0802.0300.
[24] L. D. Cerbo,et al. Generic Properties of Homogeneous Ricci Solitons , 2007, 0711.0465.
[25] Thomas A. Ivey,et al. New examples of complete Ricci solitons , 1994 .
[26] Peng Lu,et al. The Ricci Flow: Techniques and Applications , 2007 .
[27] A. Spiro,et al. Kähler-Ricci solitons on homogeneous toric bundles , 2006, math/0604070.
[28] B. Chow. Elliptic and parabolic methods in geometry , 1996 .
[29] D. Page. A COMPACT ROTATING GRAVITATIONAL INSTANTON , 1978 .
[30] P. Bassanini,et al. Elliptic Partial Differential Equations of Second Order , 1997 .
[31] Wan-Xiong Shi. Deforming the metric on complete Riemannian manifolds , 1989 .
[32] K. Yano. On Harmonic and Killing Vector Fields , 1952 .
[33] S. Bando. Real analyticity of solutions of Hamilton's equation , 1987 .
[34] Jorge Lauret,et al. Ricci soliton homogeneous nilmanifolds , 2001 .
[35] N. Koiso,et al. Nonhomogeneous Kähler-Einstein metrics on compact complex manifolds. II , 1988 .
[36] H. Cao. Geometry of Ricci Solitons* , 2006 .
[37] A. Spiro,et al. Kähler manifolds with large isometry group , 1997, dg-ga/9709003.
[38] A. Nadel. Multiplier ideal sheaves and Kähler-Einstein metrics of positive scalar curvature , 1990 .
[39] Mckenzie Y. Wang,et al. Kähler-Einstein metrics of cohomogeneity one , 1998 .
[40] N. Koiso. On Rotationally Symmetric Hamilton’s Equation for Kähler–Einstein Metrics , 1990 .
[41] P. Baird. The Ricci flow: techniques and applications -Part I: Geometric aspects (Mathematical Surveys and Monographs 135) , 2008 .
[42] D. Gilbarg,et al. Elliptic Partial Differential Equa-tions of Second Order , 1977 .
[43] Ricci solitons: the equation point of view , 2006, math/0607546.
[44] M. Feldman,et al. Rotationally symmetric shrinking and ex - panding gradient Kahler - Ricci solitons , 2003 .
[45] 上海科学技術文献出版社. 数学年刊 = Chinese annals of mathematics , 1982 .