Period Constraints on Hyperelliptic Branch Points

Information Theoretic analysis of the periods of a hyperelliptic curve provides more information about the well–known but abstract relationship between the branch points and the periods. Here one constructs a canonical homology basis for a hyperelliptic curve that shows that its periods must satisfy certain constraints and defines an open set in the Siegel upper half space that cannot contain any period matrices of hyperelliptic curves.

[1]  Yonina C. Eldar,et al.  Blind Compressed Sensing , 2010, IEEE Transactions on Information Theory.

[2]  J. Wolper Numerical experiments related to the information-theoretic Schottky and Torelli problems , 2012 .

[3]  H. Rauch ON THE TRANSCENDENTAL MODULI OF ALGEBRAIC RIEMANN SURFACES. , 1955, Proceedings of the National Academy of Sciences of the United States of America.

[4]  David L. Donoho,et al.  The Optimal Hard Threshold for Singular Values is 4/sqrt(3) , 2013, 1305.5870.

[5]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[6]  S. Grushevsky The Schottky Problem , 2010, 1009.0369.

[7]  Joe W. Harris,et al.  Principles of Algebraic Geometry , 1978 .

[8]  Republik Indonesia,et al.  Samuel , 2018, Un viaje sin viajero: relato de extranjeras en Calcuta.

[9]  E. Lorenz Deterministic nonperiodic flow , 1963 .