On the inverse problem of identifying Lamé coefficients in linear elasticity

An output least-squares type functional is employed to identify the Lame parameters in linear elasticity. To be able to identify even the discontinuous Lame parameters the regularization is performed by the BV-seminorm. Finite element discretization is used and convergence analysis is given. Numerical examples are given to show the feasibility of the approach.

[1]  A. A. Khan,et al.  Iterative regularization for elliptic inverse problems , 2007, Comput. Math. Appl..

[2]  K. Kunisch,et al.  The augmented lagrangian method for parameter estimation in elliptic systems , 1990 .

[3]  Joyce R. McLaughlin,et al.  Recovery of the Lamé parameter μ in biological tissues , 2003 .

[4]  E. Giusti Minimal surfaces and functions of bounded variation , 1977 .

[5]  Mark S. Gockenbach,et al.  Identification of Lamé parameters in linear elasticity: a fixed point approach , 2005 .

[6]  M. Gockenbach,et al.  A Variational Method for Recovering Planar Lamé Moduli , 2002 .

[7]  Xue-Cheng Tai,et al.  Identification of Discontinuous Coefficients in Elliptic Problems Using Total Variation Regularization , 2003, SIAM J. Sci. Comput..

[8]  Steven J. Cox,et al.  Recovering Planar Lame Moduli from a Single-Traction Experiment , 1997 .

[9]  J. Lions,et al.  Inequalities in mechanics and physics , 1976 .

[10]  L. Evans Measure theory and fine properties of functions , 1992 .

[11]  Joyce R. McLaughlin,et al.  Unique identifiability of elastic parameters from time-dependent interior displacement measurement , 2004 .

[12]  Mark S. Gockenbach,et al.  Equation error approach for elliptic inverse problems with an application to the identification of Lamé parameters , 2008 .

[13]  Fadil Santosa,et al.  Recovery of Blocky Images from Noisy and Blurred Data , 1996, SIAM J. Appl. Math..

[14]  Assad A. Oberai,et al.  INVERSE PROBLEMS PII: S0266-5611(03)54272-1 Solution of inverse problems in elasticity imaging using the adjoint method , 2003 .

[15]  NUMERIGAL ANAIYS,et al.  A variational method for parameter identification , 2009 .

[16]  S. C. Brenner,et al.  A nonconforming mixed multigrid method for the pure displacement problem in planar linear elasticity , 1993 .

[17]  Jun Zou,et al.  Numerical methods for elliptic inverse problems , 1998, Int. J. Comput. Math..

[18]  W. Han,et al.  A regularization method for coefficient identification of a nonhomogeneous Helmholtz equation , 1994 .

[19]  K. R. Raghavan,et al.  Forward and inverse problems in elasticity imaging of soft tissues , 1994 .

[20]  Mark S. Gockenbach,et al.  An Abstract Framework for Elliptic Inverse Problems: Part 1. An Output Least-Squares Approach , 2007 .

[21]  Zhiming Chen,et al.  An Augmented Lagrangian Method for Identifying Discontinuous Parameters in Elliptic Systems , 1999 .

[22]  C. Vogel Computational Methods for Inverse Problems , 1987 .

[23]  Mark S. Gockenbach,et al.  An Abstract Framework for Elliptic Inverse Problems: Part 2. An Augmented Lagrangian Approach , 2009 .

[24]  I. Knowles Parameter identification for elliptic problems , 2001 .

[25]  Robert Acar,et al.  Identification of the coefficient in elliptic equations , 1993 .