On the inverse problem of identifying Lamé coefficients in linear elasticity
暂无分享,去创建一个
[1] A. A. Khan,et al. Iterative regularization for elliptic inverse problems , 2007, Comput. Math. Appl..
[2] K. Kunisch,et al. The augmented lagrangian method for parameter estimation in elliptic systems , 1990 .
[3] Joyce R. McLaughlin,et al. Recovery of the Lamé parameter μ in biological tissues , 2003 .
[4] E. Giusti. Minimal surfaces and functions of bounded variation , 1977 .
[5] Mark S. Gockenbach,et al. Identification of Lamé parameters in linear elasticity: a fixed point approach , 2005 .
[6] M. Gockenbach,et al. A Variational Method for Recovering Planar Lamé Moduli , 2002 .
[7] Xue-Cheng Tai,et al. Identification of Discontinuous Coefficients in Elliptic Problems Using Total Variation Regularization , 2003, SIAM J. Sci. Comput..
[8] Steven J. Cox,et al. Recovering Planar Lame Moduli from a Single-Traction Experiment , 1997 .
[9] J. Lions,et al. Inequalities in mechanics and physics , 1976 .
[10] L. Evans. Measure theory and fine properties of functions , 1992 .
[11] Joyce R. McLaughlin,et al. Unique identifiability of elastic parameters from time-dependent interior displacement measurement , 2004 .
[12] Mark S. Gockenbach,et al. Equation error approach for elliptic inverse problems with an application to the identification of Lamé parameters , 2008 .
[13] Fadil Santosa,et al. Recovery of Blocky Images from Noisy and Blurred Data , 1996, SIAM J. Appl. Math..
[14] Assad A. Oberai,et al. INVERSE PROBLEMS PII: S0266-5611(03)54272-1 Solution of inverse problems in elasticity imaging using the adjoint method , 2003 .
[15] NUMERIGAL ANAIYS,et al. A variational method for parameter identification , 2009 .
[16] S. C. Brenner,et al. A nonconforming mixed multigrid method for the pure displacement problem in planar linear elasticity , 1993 .
[17] Jun Zou,et al. Numerical methods for elliptic inverse problems , 1998, Int. J. Comput. Math..
[18] W. Han,et al. A regularization method for coefficient identification of a nonhomogeneous Helmholtz equation , 1994 .
[19] K. R. Raghavan,et al. Forward and inverse problems in elasticity imaging of soft tissues , 1994 .
[20] Mark S. Gockenbach,et al. An Abstract Framework for Elliptic Inverse Problems: Part 1. An Output Least-Squares Approach , 2007 .
[21] Zhiming Chen,et al. An Augmented Lagrangian Method for Identifying Discontinuous Parameters in Elliptic Systems , 1999 .
[22] C. Vogel. Computational Methods for Inverse Problems , 1987 .
[23] Mark S. Gockenbach,et al. An Abstract Framework for Elliptic Inverse Problems: Part 2. An Augmented Lagrangian Approach , 2009 .
[24] I. Knowles. Parameter identification for elliptic problems , 2001 .
[25] Robert Acar,et al. Identification of the coefficient in elliptic equations , 1993 .